Global and international security cannot be provided from a single point or a set of separate points whatever powerful these might be(even with quantum supercomputers!).It should rather be deeply embedded and integrat...Global and international security cannot be provided from a single point or a set of separate points whatever powerful these might be(even with quantum supercomputers!).It should rather be deeply embedded and integrated with bodies of real systems wherever in physical,virtual,or combined spaces they may exist.So global security capabilities should not only be distributed,but rather be really spatial,self-organized,and dynamic,also exhibiting overall integrity,awareness,and consciousness features.The paper describes applicability of the patented and revealed in 10 books Spatial Grasp Model and Technology(SGT)and its basic Spatial Grasp Language(SGL)which conceptually and functionally match security problems of large distributed and heterogeneous systems.It investigates very practical security solutions for finding and tracing distribution of forbidden items,world roaming criminals,recovery from natural and human-made disasters,tracing and elimination of moving dangerous objects in terrestrial and celestial spaces,as well as analysis and restoration of damaged transport networks.It advises how different security infrastructures can be organized and managed,and how to cooperate and integrate within global security systems with higher awareness and consciousness levels over them.The provided security-oriented version of SGL can be quickly implemented and integrated with existing distributed management and security systems.展开更多
A high-level technology is revealed that can effectively convert any distributed system into a globally programmable machine capable of operating without central resources and self-recovering from indiscriminate damag...A high-level technology is revealed that can effectively convert any distributed system into a globally programmable machine capable of operating without central resources and self-recovering from indiscriminate damages. Integral mission scenarios in Distributed Scenario Language (DSL) can be injected from any point, runtime covering & grasping the whole system or its parts, setting operational infrastructures, and orienting local and global behavior in the way needed. Many operational scenarios can be simultaneously injected into this spatial machine from different points, cooperating or competing over the shared distributed knowledge as overlapping fields of solutions. Distributed DSL interpreter organization and benefits of using this technology for integrated air and missile defense are discussed along with programming examples in this and other fields.展开更多
With the world conflicts steadily moving from kinetics to cultural dimensions, the author will be discussing here a new, promising, trend allowing for effective solutions of complex national and international problems...With the world conflicts steadily moving from kinetics to cultural dimensions, the author will be discussing here a new, promising, trend allowing for effective solutions of complex national and international problems by intelligent and predominantly peaceful means using the concept of Human Terrain (HT). A novel ideology and supporting high-level networking technology will be revealed that can effectively implement HT ideas in large networked spaces. The technology is based on holistic and gestalt principles in dealing with complex distributed systems in opposition to traditional multi-agent and interoperability organizations. This allows researchers to grasp nonlocal social, cultural, ethnic, religious, and, if needed, military problems with their integral solutions on top semantic level and expresses them in a special high-level language suitable for implementation in manned, unmanned, or combined systems.展开更多
The paper investigates applicability of the developed high-level model and technology for solution of diverse problems in large distributed dynamic systems which can provide sufficient awareness of their structures,or...The paper investigates applicability of the developed high-level model and technology for solution of diverse problems in large distributed dynamic systems which can provide sufficient awareness of their structures,organization,and functionalities.After the review of meanings of awareness and existing approaches for its expression and support,the paper shows application of the Spatial Grasp Model and Technology(SGT)and its basic Spatial Grasp Language(SGL)for very practical awareness solutions in large distributed dynamic systems,with obtaining any knowledge from any point inside or outside the system.The self-evolving,self-replicating,and self-recovering scenario code in SGL can effectively supervise distributed systems under any circumstances including rapidly changing number of their elements.Examples are provided in SGL for distributed networked systems showing how in any node any information about other nodes and links,including the whole system,can be obtained by using network requesting patterns based on recursive scenarios combining forward and backward network matching and coverage.The returned results may be automatically organized in networked patterns too.The presented exemplary solutions are parallel and fully distributed,without the need of using vulnerable centralized resources,also very compact.This can be explained by fundamentally different philosophy and ideology of SGT which is not based on traditional partitioned systems representation and multiple agent communications.On the contrary,SGT and its basic language supervise and control distributed systems by holistic self-spreading recursive code in wavelike,virus-like,and even“soul-like”mode.展开更多
A high-level control technology will be revealed that can dynamically establish overwhelming dominance over distributed networked systems with embedded electronic devices and any communications between them. It is bas...A high-level control technology will be revealed that can dynamically establish overwhelming dominance over distributed networked systems with embedded electronic devices and any communications between them. It is based on implanting of universal control modules (that may be concealed) into key system points which collectively interpret complex but compact mission scenarios in a special high-level Distributed Scenario language (DSL). Self-evolving and self-spreading in networks, matching them in a super-virus mode, DSL scenarios can analyze their structures and states and set up any behavior needed, including creation of benign or elimination of unwanted infrastructures. The scalable technology allows us to convert any distributed networked systems into a sort of integral spatial brain capable of analyzing and withstanding unpredictable situations in a variety of important domains.展开更多
The world is steadily moving to the post-liberal order with the urgent need of novel organizational and security approaches,also new levels of international cooperation,in order to support its stability and prosperity...The world is steadily moving to the post-liberal order with the urgent need of novel organizational and security approaches,also new levels of international cooperation,in order to support its stability and prosperity.The developed high-level Spatial Grasp Technology(SGT)and its Spatial Grasp Language(SGL)are briefed which may be particularly useful for solving numerous conflicts and crises problems emerging in different areas during this transitional period,in both local and global scale.SGT employs unlimited spatial scenario mobility and parallel holistic matching of distributed systems,with numerous communicating SGL interpreters potentially installed worldwide.Basic network creation and management operations are described in SGL which may operate on top of existing communication systems or serve individually as high level network protocols in case of non-local crises and disasters.Different operations on social networks are presented in SGL including finding strongest and weakest components with resultant changing of network topologies,also determining distances between different communities for preventing and predicting social conflicts.Fully distributed analysis,and tracing and simulation of multiple mobile objects in distributed spaces with complex routes are shown in SGL related to cruise missiles,defence objects and debris in outer space,as well as massively moving refugees through international borders.The proposed technology had trial implementations and applications in different countries,and its latest version can be readily installed by agreement on any platforms needed.展开更多
In an addition to the variety of topics in aims and scope of the Journal of International Relations and Diplomacy, we would be happy to offer here some more areas in line with its general orientation, which could be w...In an addition to the variety of topics in aims and scope of the Journal of International Relations and Diplomacy, we would be happy to offer here some more areas in line with its general orientation, which could be worth investigating, encouraging more paper submissions. These relate to effective organization of large distributed dynamic systems of diverse natures which may require innovative solutions reflecting the growing world dynamics in the 21 st century with emerging challenges and threats to local and global prosperity, stability, and safety.展开更多
A novel control ideology and technology for solving tasks in large distributed networked systems will be briefed. Based on active scenarios self-navigating and self-matching distributed spaces in a highly organized su...A novel control ideology and technology for solving tasks in large distributed networked systems will be briefed. Based on active scenarios self-navigating and self-matching distributed spaces in a highly organized super-virus mode, it can effectively establish global control over large systems of any natures. The technology can use numerous scattered and dissimilar facilities in an integral and holistic way, allowing them to work together in goal-driven supercomputer mode. The approach can be useful for advanced air and missile defense in a variety of ways which is described and explained in this paper.展开更多
This paper relates to accepted presentation at international conference Air and Missile Defence Technology,November 16-17,2022,London UK(day two),reflecting contents of the presentation slides.It describes application...This paper relates to accepted presentation at international conference Air and Missile Defence Technology,November 16-17,2022,London UK(day two),reflecting contents of the presentation slides.It describes applications of the patented and internationally tested Spatial Grasp Technology(SGT)and its Spatial Grasp Language(SGL)for Integrated Air and Missile Defense(IAMD).Based on holistic space navigation and processing by recursive mobile code self-spreading in distributed words,SGT differs radically from traditional management of large systems as consisting of parts exchanging messages.The dynamic network of SGL interpreters can be arbitrarily large and cover terrestrial and celestial environments as powerful spatial engines.The paper contains an example of tracking and destruction of multiple cruise missiles by self-evolving spatial intelligence in SGL using networks of radar stations.It also briefs the growing multiple satellite constellation in Low Earth Orbits(LEO)for potential IAMD applications.Starting from Strategic Defense Initiative(SDI)of the past and then briefing the latest project of Space Development Agency,the paper shows SGL solutions for discovery,tracking,and destroying ballistic missiles and hypersonic gliders with the use of collectively behaving constellations of LEO satellites.It also shows how to organize higher levels of supervision of groups of mobile chasers fighting multiple targets(both potentially as missiles or drones),by providing their global awareness even consciousness in SGL which can drastically improve their performance.The latest version of SGT can be implemented on any platforms and put into operation in a short time,similarly to its previous versions in different countries.展开更多
The paper describes the use of invented,developed,and tested in different countries of the high-level spatial grasp model and technology capable of solving important problems in large social systems,which may be repre...The paper describes the use of invented,developed,and tested in different countries of the high-level spatial grasp model and technology capable of solving important problems in large social systems,which may be represented as dynamic,self-evolving and distributed social networks.The approach allows us to find important solutions on a holistic level by spatial navigation and parallel pattern matching of social networks with active self-propagating scenarios represented in a special recursive language.This approach effectively hides inside the distributed and networked language implementation traditional system management routines,often providing hundreds of times shorter and simpler high-level solution code.The paper highlights the demands to efficient simulation of social systems,briefs the technology used,and provides some programming examples for solutions of practical problems.展开更多
文摘Global and international security cannot be provided from a single point or a set of separate points whatever powerful these might be(even with quantum supercomputers!).It should rather be deeply embedded and integrated with bodies of real systems wherever in physical,virtual,or combined spaces they may exist.So global security capabilities should not only be distributed,but rather be really spatial,self-organized,and dynamic,also exhibiting overall integrity,awareness,and consciousness features.The paper describes applicability of the patented and revealed in 10 books Spatial Grasp Model and Technology(SGT)and its basic Spatial Grasp Language(SGL)which conceptually and functionally match security problems of large distributed and heterogeneous systems.It investigates very practical security solutions for finding and tracing distribution of forbidden items,world roaming criminals,recovery from natural and human-made disasters,tracing and elimination of moving dangerous objects in terrestrial and celestial spaces,as well as analysis and restoration of damaged transport networks.It advises how different security infrastructures can be organized and managed,and how to cooperate and integrate within global security systems with higher awareness and consciousness levels over them.The provided security-oriented version of SGL can be quickly implemented and integrated with existing distributed management and security systems.
文摘A high-level technology is revealed that can effectively convert any distributed system into a globally programmable machine capable of operating without central resources and self-recovering from indiscriminate damages. Integral mission scenarios in Distributed Scenario Language (DSL) can be injected from any point, runtime covering & grasping the whole system or its parts, setting operational infrastructures, and orienting local and global behavior in the way needed. Many operational scenarios can be simultaneously injected into this spatial machine from different points, cooperating or competing over the shared distributed knowledge as overlapping fields of solutions. Distributed DSL interpreter organization and benefits of using this technology for integrated air and missile defense are discussed along with programming examples in this and other fields.
文摘With the world conflicts steadily moving from kinetics to cultural dimensions, the author will be discussing here a new, promising, trend allowing for effective solutions of complex national and international problems by intelligent and predominantly peaceful means using the concept of Human Terrain (HT). A novel ideology and supporting high-level networking technology will be revealed that can effectively implement HT ideas in large networked spaces. The technology is based on holistic and gestalt principles in dealing with complex distributed systems in opposition to traditional multi-agent and interoperability organizations. This allows researchers to grasp nonlocal social, cultural, ethnic, religious, and, if needed, military problems with their integral solutions on top semantic level and expresses them in a special high-level language suitable for implementation in manned, unmanned, or combined systems.
文摘The paper investigates applicability of the developed high-level model and technology for solution of diverse problems in large distributed dynamic systems which can provide sufficient awareness of their structures,organization,and functionalities.After the review of meanings of awareness and existing approaches for its expression and support,the paper shows application of the Spatial Grasp Model and Technology(SGT)and its basic Spatial Grasp Language(SGL)for very practical awareness solutions in large distributed dynamic systems,with obtaining any knowledge from any point inside or outside the system.The self-evolving,self-replicating,and self-recovering scenario code in SGL can effectively supervise distributed systems under any circumstances including rapidly changing number of their elements.Examples are provided in SGL for distributed networked systems showing how in any node any information about other nodes and links,including the whole system,can be obtained by using network requesting patterns based on recursive scenarios combining forward and backward network matching and coverage.The returned results may be automatically organized in networked patterns too.The presented exemplary solutions are parallel and fully distributed,without the need of using vulnerable centralized resources,also very compact.This can be explained by fundamentally different philosophy and ideology of SGT which is not based on traditional partitioned systems representation and multiple agent communications.On the contrary,SGT and its basic language supervise and control distributed systems by holistic self-spreading recursive code in wavelike,virus-like,and even“soul-like”mode.
文摘A high-level control technology will be revealed that can dynamically establish overwhelming dominance over distributed networked systems with embedded electronic devices and any communications between them. It is based on implanting of universal control modules (that may be concealed) into key system points which collectively interpret complex but compact mission scenarios in a special high-level Distributed Scenario language (DSL). Self-evolving and self-spreading in networks, matching them in a super-virus mode, DSL scenarios can analyze their structures and states and set up any behavior needed, including creation of benign or elimination of unwanted infrastructures. The scalable technology allows us to convert any distributed networked systems into a sort of integral spatial brain capable of analyzing and withstanding unpredictable situations in a variety of important domains.
文摘The world is steadily moving to the post-liberal order with the urgent need of novel organizational and security approaches,also new levels of international cooperation,in order to support its stability and prosperity.The developed high-level Spatial Grasp Technology(SGT)and its Spatial Grasp Language(SGL)are briefed which may be particularly useful for solving numerous conflicts and crises problems emerging in different areas during this transitional period,in both local and global scale.SGT employs unlimited spatial scenario mobility and parallel holistic matching of distributed systems,with numerous communicating SGL interpreters potentially installed worldwide.Basic network creation and management operations are described in SGL which may operate on top of existing communication systems or serve individually as high level network protocols in case of non-local crises and disasters.Different operations on social networks are presented in SGL including finding strongest and weakest components with resultant changing of network topologies,also determining distances between different communities for preventing and predicting social conflicts.Fully distributed analysis,and tracing and simulation of multiple mobile objects in distributed spaces with complex routes are shown in SGL related to cruise missiles,defence objects and debris in outer space,as well as massively moving refugees through international borders.The proposed technology had trial implementations and applications in different countries,and its latest version can be readily installed by agreement on any platforms needed.
文摘In an addition to the variety of topics in aims and scope of the Journal of International Relations and Diplomacy, we would be happy to offer here some more areas in line with its general orientation, which could be worth investigating, encouraging more paper submissions. These relate to effective organization of large distributed dynamic systems of diverse natures which may require innovative solutions reflecting the growing world dynamics in the 21 st century with emerging challenges and threats to local and global prosperity, stability, and safety.
文摘A novel control ideology and technology for solving tasks in large distributed networked systems will be briefed. Based on active scenarios self-navigating and self-matching distributed spaces in a highly organized super-virus mode, it can effectively establish global control over large systems of any natures. The technology can use numerous scattered and dissimilar facilities in an integral and holistic way, allowing them to work together in goal-driven supercomputer mode. The approach can be useful for advanced air and missile defense in a variety of ways which is described and explained in this paper.
文摘This paper relates to accepted presentation at international conference Air and Missile Defence Technology,November 16-17,2022,London UK(day two),reflecting contents of the presentation slides.It describes applications of the patented and internationally tested Spatial Grasp Technology(SGT)and its Spatial Grasp Language(SGL)for Integrated Air and Missile Defense(IAMD).Based on holistic space navigation and processing by recursive mobile code self-spreading in distributed words,SGT differs radically from traditional management of large systems as consisting of parts exchanging messages.The dynamic network of SGL interpreters can be arbitrarily large and cover terrestrial and celestial environments as powerful spatial engines.The paper contains an example of tracking and destruction of multiple cruise missiles by self-evolving spatial intelligence in SGL using networks of radar stations.It also briefs the growing multiple satellite constellation in Low Earth Orbits(LEO)for potential IAMD applications.Starting from Strategic Defense Initiative(SDI)of the past and then briefing the latest project of Space Development Agency,the paper shows SGL solutions for discovery,tracking,and destroying ballistic missiles and hypersonic gliders with the use of collectively behaving constellations of LEO satellites.It also shows how to organize higher levels of supervision of groups of mobile chasers fighting multiple targets(both potentially as missiles or drones),by providing their global awareness even consciousness in SGL which can drastically improve their performance.The latest version of SGT can be implemented on any platforms and put into operation in a short time,similarly to its previous versions in different countries.
文摘The paper describes the use of invented,developed,and tested in different countries of the high-level spatial grasp model and technology capable of solving important problems in large social systems,which may be represented as dynamic,self-evolving and distributed social networks.The approach allows us to find important solutions on a holistic level by spatial navigation and parallel pattern matching of social networks with active self-propagating scenarios represented in a special recursive language.This approach effectively hides inside the distributed and networked language implementation traditional system management routines,often providing hundreds of times shorter and simpler high-level solution code.The paper highlights the demands to efficient simulation of social systems,briefs the technology used,and provides some programming examples for solutions of practical problems.