Carbon-doped copper ferrite(C–CuFe_(2)O_(4))was synthesized by a simple two-step hydrothermal method,which showed enhanced tetracycline hydrochloride(TCH)removal efficiency as compared to the pure CuFe_(2)O_(4) in Fe...Carbon-doped copper ferrite(C–CuFe_(2)O_(4))was synthesized by a simple two-step hydrothermal method,which showed enhanced tetracycline hydrochloride(TCH)removal efficiency as compared to the pure CuFe_(2)O_(4) in Fenton-like reaction.A removal efficiency of 94%was achieved with 0.2 g L^(-1) catalyst and 20 mmol L^(-1) H_(2)O_(2) within 90 min.We demonstrated that 5%C–CuFe_(2)O_(4) catalyst in the presence of H_(2)O_(2) was significantly efficient for TCH degradation under the near-neutral pH(5–9)without buffer.Multiple techniques,including SEM,TEM,XRD,FTIR,Raman,XPS M€ossbauer and so on,were conducted to investigate the structures,morphologies and electronic properties of as-prepared samples.The introduction of carbon can effectively accelerate electron transfer by cooperating with Cu and Fe to activate H_(2)O_(2) to generate·OH and·O_(2)^(-).Particularly,theoretical calculations display that the p,p,d orbital hybridization of C,O,Cu and Fe can form C–O–Cu and C–O–Fe bonds,and the electrons on carbon can transfer to metal Cu and Fe along the C–O–Fe and C–O–Cu channels,thus forming electron-rich reactive centers around Fe and Cu.This work provides lightful reference for the modification of spinel ferrites in Fenton-like application.展开更多
Mitochondrial dysfunction is proposed to be substantially associated with ageing and ageing-related diseases like Alzheimer's disease(AD). However, it is unclear whether different mouse models with mitochondrialre...Mitochondrial dysfunction is proposed to be substantially associated with ageing and ageing-related diseases like Alzheimer's disease(AD). However, it is unclear whether different mouse models with mitochondrialrelated diseases have similar changes in mitochondrial morphology of the same tissues. Moreover, whether similarities in mitochondrial morphology can be a suitable marker for screening and/or discovering mitochondrial-protective substances remains unknown. Mitochondria morphology in different tissues of a novel mitochondrial outer membrane protein Slc25a46 knockout mouse and a traditional APP_(SWE)/PS1ΔE9 transgenic mouse were examined using transmission electron microscope(TEM). Both young Slc25a46 knockout mice and aged APP_(SWE)/PS1ΔE9 mice models showed similar mitochondrial damage in cerebellum tissues. The results indicated that different mitochondrial-related diseases shared similar alteration and defects in mitochondrial morphology. Furthermore, Lycium ruthenicum Murr. extract, a bioactive food substance with cognition-improving property, could effectively improve muscle strength and increase body weight in the Slc25a46 knockout mice. These findings suggest that mitochondrial morphology defects in mice models, particularly in the mitochondrial compartment, represent a unified and effective marker for screening and validating natural product-derived functional substances with mitochondrial protective properties. It also holds potential application in mitochondrial-impaired senile neurodegenerative diseases, especially in AD.展开更多
Due to the wide use of silver nanoparticles(AgNPs) in various fields, it is crucial to explore the potential negative impacts on the aquatic environment of AgNPs entering into the environment in different ways. In thi...Due to the wide use of silver nanoparticles(AgNPs) in various fields, it is crucial to explore the potential negative impacts on the aquatic environment of AgNPs entering into the environment in different ways. In this study, comparative experiments were conducted to investigate the toxicological impacts of polyvinylpyrrolidone-coated silver nanoparticles(PVP-AgNPs) with two kinds of dosing regimens, continuous and one-time pulsed dosing, in different exposure media(deionized water and XiangJiang River water). There were a number of quite different experimental results(including 100% mortality of zebrafish,decline in the activity of enzymes, and lowest number and length of adventitious roots) in the one-time pulsed dosing regimen at high PVP-AgNP concentration exposure(HOE)compared to the three other treatments. Meanwhile, we determined that the concentration of leached silver ions from PVP-AgNPs was too low to play a role in zebrafish death. Those results showed that HOE led to a range of dramatic ecosystem impacts which were more destructive than those of other treatments. Moreover, compared with the continuous dosing regimen, despite the fact that higher toxicity was observed for HOE, there was little difference in the removal of total silver from the aquatic environment for the different dosing regimens. No obvious differences in ecological impacts were observed between different water columns under low concentration exposure. Overall, this work highlighted the fact that the toxicity of Ag NPs was impacted by different dosing regimens in different exposure media, which may be helpful for assessments of ecological impacts on aquatic environments.展开更多
This study investigated the interaction between Cu^2+and nano zero-valent iron(NZVI)coated with three types of stabilizers(i.e., polyacrylic acid [PAA], Tween-20 and starch) by examining the Cu^2+ uptake, coll...This study investigated the interaction between Cu^2+and nano zero-valent iron(NZVI)coated with three types of stabilizers(i.e., polyacrylic acid [PAA], Tween-20 and starch) by examining the Cu^2+ uptake, colloidal stability and mobility of surface-modified NZVI(SM-NZVI) in the presence of Cu^2+. The uptake of Cu^2+ by SM-NZVI and the colloidal stability of the Cu-bearing SM-NZVI were examined in batch tests. The results showed that NZVI coated with different modifiers exhibited different affinities for Cu^2+, which resulted in varying colloidal stability of different SM-NZVI in the presence of Cu^2+. The presence of Cu^2+ exerted a slight influence on the aggregation and settling of NZVI modified with PAA or Tween-20. However, the presence of Cu^2+caused significant aggregation and sedimentation of starch-modified NZVI, which is due to Cu^2+complexation with the starch molecules coated on the surface of the particles. Column experiments were conducted to investigate the co-transport of Cu^2+ in association with SM-NZVI in water-saturated quartz sand. It was presumed that a physical straining mechanism accounted for the retention of Cu-bearing SM-NZVI in the porous media. Moreover, the enhanced aggregation of SM-NZVI in the presence of Cu^2+ may be contributing to this straining effect.展开更多
基金supported by the Program for the National Natural Science Foundation of China(52070077,51879101,51779090)the National Program for Support of Top-Notch Young Professionals of China(2014)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University(IRT-13R17)Natural Science Foundation of Hunan Province(2022JJ20013,2021JJ40098).
文摘Carbon-doped copper ferrite(C–CuFe_(2)O_(4))was synthesized by a simple two-step hydrothermal method,which showed enhanced tetracycline hydrochloride(TCH)removal efficiency as compared to the pure CuFe_(2)O_(4) in Fenton-like reaction.A removal efficiency of 94%was achieved with 0.2 g L^(-1) catalyst and 20 mmol L^(-1) H_(2)O_(2) within 90 min.We demonstrated that 5%C–CuFe_(2)O_(4) catalyst in the presence of H_(2)O_(2) was significantly efficient for TCH degradation under the near-neutral pH(5–9)without buffer.Multiple techniques,including SEM,TEM,XRD,FTIR,Raman,XPS M€ossbauer and so on,were conducted to investigate the structures,morphologies and electronic properties of as-prepared samples.The introduction of carbon can effectively accelerate electron transfer by cooperating with Cu and Fe to activate H_(2)O_(2) to generate·OH and·O_(2)^(-).Particularly,theoretical calculations display that the p,p,d orbital hybridization of C,O,Cu and Fe can form C–O–Cu and C–O–Fe bonds,and the electrons on carbon can transfer to metal Cu and Fe along the C–O–Fe and C–O–Cu channels,thus forming electron-rich reactive centers around Fe and Cu.This work provides lightful reference for the modification of spinel ferrites in Fenton-like application.
基金This work was supported by the National Key Researchand DevelopmentProgramof China(No.2019YFA0307700)the National Natural Science Foundation of China(No.12274418,No.22273116,No.12074389,No.11974381,and No.22363011)the Knowledge Innovation Program of Wuhan-Basic Research(No.2022010801010134 and No.2023020201010084).
基金supported by National Key R&D Program of China (2018YFD0901101)the Natural Science Foundation of Guangdong Province Research (2019A1515012230)+1 种基金Development Program in Key Areas of Guangdong Province (2019B020210002)the Fundamental Research Funds for the Central Universities (2019KZ01)。
文摘Mitochondrial dysfunction is proposed to be substantially associated with ageing and ageing-related diseases like Alzheimer's disease(AD). However, it is unclear whether different mouse models with mitochondrialrelated diseases have similar changes in mitochondrial morphology of the same tissues. Moreover, whether similarities in mitochondrial morphology can be a suitable marker for screening and/or discovering mitochondrial-protective substances remains unknown. Mitochondria morphology in different tissues of a novel mitochondrial outer membrane protein Slc25a46 knockout mouse and a traditional APP_(SWE)/PS1ΔE9 transgenic mouse were examined using transmission electron microscope(TEM). Both young Slc25a46 knockout mice and aged APP_(SWE)/PS1ΔE9 mice models showed similar mitochondrial damage in cerebellum tissues. The results indicated that different mitochondrial-related diseases shared similar alteration and defects in mitochondrial morphology. Furthermore, Lycium ruthenicum Murr. extract, a bioactive food substance with cognition-improving property, could effectively improve muscle strength and increase body weight in the Slc25a46 knockout mice. These findings suggest that mitochondrial morphology defects in mice models, particularly in the mitochondrial compartment, represent a unified and effective marker for screening and validating natural product-derived functional substances with mitochondrial protective properties. It also holds potential application in mitochondrial-impaired senile neurodegenerative diseases, especially in AD.
基金supported by the National Natural Science Foundation of China (Nos.51579099,51521006,and 51508186)the Program for Changjiang Scholars and Innovative Research Team in University (No.IRT-13R17)the Hunan Provincial Natural Science Foundation of China (No.2016JJ3076)
文摘Due to the wide use of silver nanoparticles(AgNPs) in various fields, it is crucial to explore the potential negative impacts on the aquatic environment of AgNPs entering into the environment in different ways. In this study, comparative experiments were conducted to investigate the toxicological impacts of polyvinylpyrrolidone-coated silver nanoparticles(PVP-AgNPs) with two kinds of dosing regimens, continuous and one-time pulsed dosing, in different exposure media(deionized water and XiangJiang River water). There were a number of quite different experimental results(including 100% mortality of zebrafish,decline in the activity of enzymes, and lowest number and length of adventitious roots) in the one-time pulsed dosing regimen at high PVP-AgNP concentration exposure(HOE)compared to the three other treatments. Meanwhile, we determined that the concentration of leached silver ions from PVP-AgNPs was too low to play a role in zebrafish death. Those results showed that HOE led to a range of dramatic ecosystem impacts which were more destructive than those of other treatments. Moreover, compared with the continuous dosing regimen, despite the fact that higher toxicity was observed for HOE, there was little difference in the removal of total silver from the aquatic environment for the different dosing regimens. No obvious differences in ecological impacts were observed between different water columns under low concentration exposure. Overall, this work highlighted the fact that the toxicity of Ag NPs was impacted by different dosing regimens in different exposure media, which may be helpful for assessments of ecological impacts on aquatic environments.
基金supported by the Fundamental Research Funds for the Central Universities (531107040788)the National Natural Science Foundation of China (Nos. 51409100, 51039001, 51378190)the Program for Changjiang Scholars and Innovative Research Team in University (IRT-13R17)
文摘This study investigated the interaction between Cu^2+and nano zero-valent iron(NZVI)coated with three types of stabilizers(i.e., polyacrylic acid [PAA], Tween-20 and starch) by examining the Cu^2+ uptake, colloidal stability and mobility of surface-modified NZVI(SM-NZVI) in the presence of Cu^2+. The uptake of Cu^2+ by SM-NZVI and the colloidal stability of the Cu-bearing SM-NZVI were examined in batch tests. The results showed that NZVI coated with different modifiers exhibited different affinities for Cu^2+, which resulted in varying colloidal stability of different SM-NZVI in the presence of Cu^2+. The presence of Cu^2+ exerted a slight influence on the aggregation and settling of NZVI modified with PAA or Tween-20. However, the presence of Cu^2+caused significant aggregation and sedimentation of starch-modified NZVI, which is due to Cu^2+complexation with the starch molecules coated on the surface of the particles. Column experiments were conducted to investigate the co-transport of Cu^2+ in association with SM-NZVI in water-saturated quartz sand. It was presumed that a physical straining mechanism accounted for the retention of Cu-bearing SM-NZVI in the porous media. Moreover, the enhanced aggregation of SM-NZVI in the presence of Cu^2+ may be contributing to this straining effect.