Adding buckling restrained braces(BRB)of reinforced concrete frame structure can effectively improve the safety performance of the structure.The dynamic reliability analysis based on Poisson continuous process assumpt...Adding buckling restrained braces(BRB)of reinforced concrete frame structure can effectively improve the safety performance of the structure.The dynamic reliability analysis based on Poisson continuous process assumption and the first exceeding failure probability can be used to obtain the failure probability of the buckling restrained brace frame system under earthquake load,and the relationship between the failure probabilities of each floor of the structure is analyzed to obtain the frame system reliability interval of frame structure.The results show that the reliability of BRB frame structure is higher than that of pure frame structure,and the discrete failure probability is lower.展开更多
Performance analysis is an important tool for gymnasts and coaches to assess the techniques,strengths,and weaknesses of rhythmic gymnasts during training.To have an accurate insight about the motion and postures can h...Performance analysis is an important tool for gymnasts and coaches to assess the techniques,strengths,and weaknesses of rhythmic gymnasts during training.To have an accurate insight about the motion and postures can help the optimization of their performance and offer personalized suggestions.However,there are three primary limitations of traditional perfor-mance analysis systems applied in rhythmic gymnastics:(1)Inability to quantify anthropometric data in an imperceptible way,(2)labor-intensive nature of data labeling and analysis,and(3)lack of monitoring of all-round and multi-dimensional perspectives of the target.Thus,an advanced performance analysis system for rhythmic gymnastics is proposed in this paper,powered by intelligent fabric.The system uses intelligent fabric to detect the physiological and anthropometric data of the gymnasts.After a variety of data are collected,the analysis component is implemented by artificial intelligence techniques resulting in behavior recognition,decision-making,and other functions assisting performance improvement.A feasible solution to implementing the analysis component is the use of the hyperdimensional computing technique.In addition,four typical applications are presented to improve training performance.Powered by intelligent fabric,the proposed advanced performance analysis system exhibits the potential to promote innovative technologies for improving training and competi-tive performance,prolonging athletic careers,as well as reducing sports injuries.展开更多
The slipperiness of ice is well known while,for ice skating,its mechanism still needs further investigation,where the complex interactions including the thermal conduction of the skate–meltwater–ice system,the ploug...The slipperiness of ice is well known while,for ice skating,its mechanism still needs further investigation,where the complex interactions including the thermal conduction of the skate–meltwater–ice system,the ploughing and the frictional melting of ice to the friction force are still unclear.This study presents a theoretical framework and a simplified analytical solution to unveil the friction mechanism when a curved skate sliding on ice.The theory is validated by experiments and the effects of these various factors,including the sliding velocity,the ice temperature,the supporting weight,and the geometry of the skate blade to the friction are revealed in detail.This study finds that the contribution of friction force from the ploughing deformation through skate indentation and that from the fluid friction through the shear motion of the meltwater layer is comparable with each other,which thus clarifies how the ploughing deformation of the ice substrate together with its frictional melting regulates the friction during skating.展开更多
Integration of human papillomavirus(HPV)DNA into the human genome is a reputed key driver of cervical cancer.However,the effects of HPV integration on chromatin structural organization and gene expression are largely ...Integration of human papillomavirus(HPV)DNA into the human genome is a reputed key driver of cervical cancer.However,the effects of HPV integration on chromatin structural organization and gene expression are largely unknown.We studied a cohort of 61 samples and identified an integration hot spot in the CCDC106 gene on chromosome 19.We then selected fresh cancer tissue that contained the unique integration loci at CCDC106 with no HPV episomal DNA and performed whole-genome,RNA,chromatin immunoprecipitation and high-throughput chromosome conformation capture(Hi-C)sequencing to identify the mechanisms of HPV integration in cervical carcinogenesis.Molecular analyses indicated that chromosome 19 exhibited significant genomic variation and differential expression densities,with correlation found between three-dimensional(3D)structural change and gene expression.Importantly,HPV integration divided one topologically associated domain(TAD)into two smaller TADs and hijacked an enhancer from PEG3 to CCDC106,with a decrease in PEG3 expression and an increase in CCDC106 expression.This expression dysregulation was further confirmed using 10 samples from our cohort,which exhibited the same HPV-CCDC106 integration.In summary,we found that HPV-CCDC106 integration altered local chromosome architecture and hijacked an enhancer via 3D genome structure remodeling.Thus,this study provides insight into the 3D structural mechanism underlying HPV integration in cervical carcinogenesis.展开更多
Medical education plays an important role in promoting the development of global medical science.Nevertheless,the intrinsic gap existing between institutional medical teaching and practical clinical tasks causes low e...Medical education plays an important role in promoting the development of global medical science.Nevertheless,the intrinsic gap existing between institutional medical teaching and practical clinical tasks causes low education efficiency and students’weak initiative.Recent developments of sensing fabric and embedded computing,along with the advances in artificial intelligence(AI)and digital twin technology are paving the way for the transformation of medical research towards digitization.In this work,we present an intelligent fabric space based on novel functional fabric materials and digital twin networking enabled by 5G and internet of things(IoT)technologies.In this space,medical students can learn knowledge with collaborative mapping of the digital and real world,cyber-physical interaction and real-time tactile feedback.And the proposed service system will evaluate and feedback students’operational behaviors to improve their experimental skills.We provide four typical applications of intelligent fabric space for medical education,including medical education training,health and behavior tracking,operation playback and reproduction,as well as medical knowledge popularization.The proposed intelligent fabric space has the potential to promote innovative technologies for training cutting-edge medical students by effective and efficient ways.展开更多
文摘Adding buckling restrained braces(BRB)of reinforced concrete frame structure can effectively improve the safety performance of the structure.The dynamic reliability analysis based on Poisson continuous process assumption and the first exceeding failure probability can be used to obtain the failure probability of the buckling restrained brace frame system under earthquake load,and the relationship between the failure probabilities of each floor of the structure is analyzed to obtain the frame system reliability interval of frame structure.The results show that the reliability of BRB frame structure is higher than that of pure frame structure,and the discrete failure probability is lower.
文摘Performance analysis is an important tool for gymnasts and coaches to assess the techniques,strengths,and weaknesses of rhythmic gymnasts during training.To have an accurate insight about the motion and postures can help the optimization of their performance and offer personalized suggestions.However,there are three primary limitations of traditional perfor-mance analysis systems applied in rhythmic gymnastics:(1)Inability to quantify anthropometric data in an imperceptible way,(2)labor-intensive nature of data labeling and analysis,and(3)lack of monitoring of all-round and multi-dimensional perspectives of the target.Thus,an advanced performance analysis system for rhythmic gymnastics is proposed in this paper,powered by intelligent fabric.The system uses intelligent fabric to detect the physiological and anthropometric data of the gymnasts.After a variety of data are collected,the analysis component is implemented by artificial intelligence techniques resulting in behavior recognition,decision-making,and other functions assisting performance improvement.A feasible solution to implementing the analysis component is the use of the hyperdimensional computing technique.In addition,four typical applications are presented to improve training performance.Powered by intelligent fabric,the proposed advanced performance analysis system exhibits the potential to promote innovative technologies for improving training and competi-tive performance,prolonging athletic careers,as well as reducing sports injuries.
基金This research was primary supported by National Key R&D Program of China(2020YFF0304600).
文摘The slipperiness of ice is well known while,for ice skating,its mechanism still needs further investigation,where the complex interactions including the thermal conduction of the skate–meltwater–ice system,the ploughing and the frictional melting of ice to the friction force are still unclear.This study presents a theoretical framework and a simplified analytical solution to unveil the friction mechanism when a curved skate sliding on ice.The theory is validated by experiments and the effects of these various factors,including the sliding velocity,the ice temperature,the supporting weight,and the geometry of the skate blade to the friction are revealed in detail.This study finds that the contribution of friction force from the ploughing deformation through skate indentation and that from the fluid friction through the shear motion of the meltwater layer is comparable with each other,which thus clarifies how the ploughing deformation of the ice substrate together with its frictional melting regulates the friction during skating.
基金supported by the National Natural Science Foundation of China(81630060 to P.W.,31771402 to G.L.,81830074 and 81772786 to H.W.,81572569 to G.C.,and 81772775 to J.W.)National Science and Technology Major Project(2019YFC1005202 and 2019YFC1005201 to K.L.,and 2018ZX10301402-002 to Q.G.)the research-oriented clinician funding program of Tongji Medical College,Huazhong University of Science and Technology for P.W
文摘Integration of human papillomavirus(HPV)DNA into the human genome is a reputed key driver of cervical cancer.However,the effects of HPV integration on chromatin structural organization and gene expression are largely unknown.We studied a cohort of 61 samples and identified an integration hot spot in the CCDC106 gene on chromosome 19.We then selected fresh cancer tissue that contained the unique integration loci at CCDC106 with no HPV episomal DNA and performed whole-genome,RNA,chromatin immunoprecipitation and high-throughput chromosome conformation capture(Hi-C)sequencing to identify the mechanisms of HPV integration in cervical carcinogenesis.Molecular analyses indicated that chromosome 19 exhibited significant genomic variation and differential expression densities,with correlation found between three-dimensional(3D)structural change and gene expression.Importantly,HPV integration divided one topologically associated domain(TAD)into two smaller TADs and hijacked an enhancer from PEG3 to CCDC106,with a decrease in PEG3 expression and an increase in CCDC106 expression.This expression dysregulation was further confirmed using 10 samples from our cohort,which exhibited the same HPV-CCDC106 integration.In summary,we found that HPV-CCDC106 integration altered local chromosome architecture and hijacked an enhancer via 3D genome structure remodeling.Thus,this study provides insight into the 3D structural mechanism underlying HPV integration in cervical carcinogenesis.
基金supported by the National Natural Science Foundation of China(62175082 and 61875064).
文摘Medical education plays an important role in promoting the development of global medical science.Nevertheless,the intrinsic gap existing between institutional medical teaching and practical clinical tasks causes low education efficiency and students’weak initiative.Recent developments of sensing fabric and embedded computing,along with the advances in artificial intelligence(AI)and digital twin technology are paving the way for the transformation of medical research towards digitization.In this work,we present an intelligent fabric space based on novel functional fabric materials and digital twin networking enabled by 5G and internet of things(IoT)technologies.In this space,medical students can learn knowledge with collaborative mapping of the digital and real world,cyber-physical interaction and real-time tactile feedback.And the proposed service system will evaluate and feedback students’operational behaviors to improve their experimental skills.We provide four typical applications of intelligent fabric space for medical education,including medical education training,health and behavior tracking,operation playback and reproduction,as well as medical knowledge popularization.The proposed intelligent fabric space has the potential to promote innovative technologies for training cutting-edge medical students by effective and efficient ways.