Continuous cropping(CC)obstacle is a major threat in legume crops production;however,the underlying mechanisms concerning the roles allelochemicals play in CC obstacle are poorly understood.The current 2-year study wa...Continuous cropping(CC)obstacle is a major threat in legume crops production;however,the underlying mechanisms concerning the roles allelochemicals play in CC obstacle are poorly understood.The current 2-year study was conducted to investigate the effects of different kinds and concentrations of allelochemicals,p-hydroxybenzoic acid(H),cinnamic acid(C),phthalic acid(P),and their mixtures(M)on peanut root growth and productivity in response to CC obstacle.Treatment with H,C,P,and M significantly decreased the plant height,dry weight of the leaves and stems,number of branches,and length of the lateral stem compared with control.Exogenous application of H,C,P,and M inhibited the peanut root growth as indicated by the decreased root morphological characters.The allelochemicals also induced the cell membrane oxidation even though the antioxidant enzymes activities were significantly increased in peanut roots.Meanwhile,treatment with H,C,P,and M reduced the contents of total soluble sugar and total soluble protein.Analysis of ATPase activity,nitrate reductase activity,and root system activity revealed that the inhibition effects of allelochemicals on peanut roots might be due to the decrease in activities of ATPase and NR,and the inhibition of root system.Consequently,allelochemicals significantly decreased the pod yield of peanut compared with control.Our results demonstrate that allelochemicals play a dominant role in CC obstacle-induced peanut growth inhibition and yield reduction through damaging the root antioxidant system,unbalancing the osmolytes accumulation,and decreasing the activities of root-related enzymes.展开更多
Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herei...Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herein,for the first time,we report a novel versatile hyphae-mediated biological assembly technology to achieve scale production of hyphae carbon fibers(HCFs)derivatives,in which different components including carbon,metal compounds,and semiconductors can be homogeneously assembled with HCFs to form composite networks.The mechanism of biological adsorption assembly is also proposed.As a representative,reduced graphene oxides(rGOs)decorated with hollow carbon spheres(HCSs)successfully co-assemble with HCFs to form HCSs@rGOs/HCFs hosts for sulfur cathodes.In this unique architecture,not only large accommodation space for sulfur but also restrained volume expansion and fast charge transport paths are realized.Meanwhile,multiscale physical barriers plus chemisorption sites are simultaneously established to anchor soluble lithium polysulfides.Accordingly,the designed HCSs@rGOs/HCFs-S cathodes deliver a high capacity(1189 mA h g^(-1)at 0.1 C)and good high-rate capability(686 mA h g^(-1)at 5 C).Our work provides a new approach for the preparation of high-performance carbon-based electrodes for energy storage devices.展开更多
The shear mechanical behavior is regarded as an essential factor affecting the stability of the surrounding rocks in underground engineering.The shear strength and failure mechanisms of layered rock are significantly ...The shear mechanical behavior is regarded as an essential factor affecting the stability of the surrounding rocks in underground engineering.The shear strength and failure mechanisms of layered rock are significantly affected by the foliation angles.Direct shear tests were conducted on cubic slate samples with foliation angles of 0°,30°,45°,60°,and 90°.The effect of foliation angles on failure patterns,acoustic emission(AE)characteristics,and shear strength parameters was analyzed.Based on AE characteristics,the slate failure process could be divided into four stages:quiet period,step-like increasing period,dramatic increasing period,and remission period.A new empirical expression of cohesion for layered rock was proposed,which was compared with linear and sinusoidal cohesion expressions based on the results made by this paper and previous experiments.The comparative analysis demonstrated that the new expression has better prediction ability than other expressions.The proposed empirical equation was used for direct shear simulations with the combined finite-discrete element method(FDEM),and it was found to align well with the experimental results.Considering both computational efficiency and accuracy,it was recommended to use a shear rate of 0.01 m/s for FDEM to carry out direct shear simulations.To balance the relationship between the number of elements and the simulation results in the direct shear simulations,the recommended element size is 1 mm.展开更多
BACKGROUND Hepatocellular carcinoma(HCC)often presents as unresectable,necessitating effective treatment modalities.Combining transarterial chemoembolization(TACE)with immunotherapy and targeted therapy has shown prom...BACKGROUND Hepatocellular carcinoma(HCC)often presents as unresectable,necessitating effective treatment modalities.Combining transarterial chemoembolization(TACE)with immunotherapy and targeted therapy has shown promise,yet real-world evidence is needed.AIM To investigate effectiveness and safety of TACE with tislelizumab±targeted therapy for unresectable HCC in real-world setting.METHODS This retrospective study included patients with unresectable HCC receiving combined treatment of TACE and tislelizumab.The clinical outcomes included progression-free survival(PFS),overall survival(OS),objective response rate(ORR),and disease control rate(DCR).All patients were evaluated according to the mRECIST criteria.The adverse event(AE)was also assessed.RESULTS In this study of 56 patients with median follow-up of 10.9 months,7 had previous immunotherapy.Tislelizumab was administered before TACE in 21(37.50%)and after in 35(62.50%)patients,with 91.07%receiving concurrent targeted therapy.Median PFS was 14.0(95%CI:7.0-18.00)months,and OS was 28(95%CI:2.94-53.05)months.Patients with prior immunotherapy had shorter PFS(6 vs.18 months,P=0.006).Overall ORR and DCR were 82.14%and 87.50%.Grade≥3 treatment-related AEs included increased alanine aminotransferase(8.93%),aspartate aminotransferase(10.71%),and total bilirubin(3.57%).CONCLUSION The combination of TACE and tislelizumab,with or without targeted therapy,demonstrated promising efficacy and safety in unresectable HCC,especially in immunotherapy-naive patients,warranting further prospective validation studies.展开更多
Experiments were conducted to evaluate the healing of drying cracks in air-dried bentonite-sand blocks after hydration and swelling in groundwater,providing justifications to simplify the protection of blocks prior to...Experiments were conducted to evaluate the healing of drying cracks in air-dried bentonite-sand blocks after hydration and swelling in groundwater,providing justifications to simplify the protection of blocks prior to installation in a high-level radioactive waste repository.Synthetic groundwater was prepared to represent the geochemistry of Beishan groundwater,and was used to hydrate the blocks during the swelling pressure and swelling strain measurements,as Beishan is the most promising site for China's repository.Healing of the surface cracks was recorded by photography,and healing of the internal cracks was visualized by CT images and hydraulic conductivity of air-dried blocks.The results indicate that the maximum swelling pressure and swelling strain are primarily affected by the geochemistry of Beishan groundwater,but not affected by the drying cracks.The maximum swelling pressure and swelling strain of air-dried blocks are comparable to or even higher than the pressure and strain of fresh blocks.The maximum swelling pressure measured in strong(i.e.high ion strength)Beishan groundwater was 44%of the pressure measured in deionized(DI)water,and the maximum swelling strain was reduced to 23%of the strain measured in DI water.Nevertheless,the remained swelling of the blocks hydrated in strong Beishan groundwater was sufficient to heal the surface and internal drying cracks,as demonstrated by the pictures of surface cracks and CT images.The hydraulic conductivity of the air-dried block permeated with strong groundwater was comparable(3.7×higher)to the hydraulic conductivity of the fresh block,indicating the self-healing of drying cracks after hydration and swelling in groundwater.A simplified method of protecting the block with plastic wraps before installation is recommended,since the remained swelling of the block hydrated in Beishan groundwater is sufficient to heal the drying cracks.展开更多
Water stability is one of the most important factors restricting the practical application of metal organic frameworks (MOFs). In this work, wefabricate a highly defective HKUST-1 framework with a mixed valence of CuI...Water stability is one of the most important factors restricting the practical application of metal organic frameworks (MOFs). In this work, wefabricate a highly defective HKUST-1 framework with a mixed valence of CuI/CuIIby mechanical ball milling method. This defective HKUST-1is embellished by functionalized ionic liquids as hydrophobic armor, making the hybrid HIL1@HKUST-1 exhibits outstanding water stability,remarkable SO_(2) adsorption (up to 5.71 mmol g^(-1)), and record-breaking selectivity (1070 for SO_(2)/CO_(2) and 31,515 for SO_(2)/N_(2)) at 25 ℃ and0.1 bar, even in wet conditions.展开更多
The self-intercalation of Cr into pristine two-dimensional(2D) van der Waals ferromagnetic CrTe_(2),which forms chromium tellurides(Cr_(x)Te_(2)),has garnered interest due to their remarkable magnetic characteristics ...The self-intercalation of Cr into pristine two-dimensional(2D) van der Waals ferromagnetic CrTe_(2),which forms chromium tellurides(Cr_(x)Te_(2)),has garnered interest due to their remarkable magnetic characteristics and the wide variety of chemical compositions available.Here,comprehensive basic characterization and magnetic studies are conducted on quasi-2D ferromagnetic Cr_(1.04)Te_(2) crystals.Measurements of the isothermal magnetization curves are conducted around the critical temperature to systematically investigate the critical behavior.Specifically,the critical exponents β=0.2399,γ=0.859,and δ=4.3498,as well as the Curie temperature T_(C)=249.56 K,are determined using various methods,including the modified Arrott plots,the Kouvel-Fisher method,the Widom scaling method,and the critical isotherm analysis.These results indicate that the tricritical mean-field model accurately represents the critical behavior of Cr_(1.04)Te_(2.A magnetic phase diagram with tricritical phenomenon is thus constructed.Further investigations confirm that the critical exponents obtained conform to the scalar equation near T_(C),indicating their self-consistency and reliability.Our work sheds light on the magnetic properties of quasi-2D Cr_(1.04)Te_(2),broadening the scope of the van der Waals crystals for developments of future spintronic devices operable at room temperature.展开更多
Objective This study aimed to develop and test a model for predicting dysthyroid optic neuropathy(DON)based on clinical factors and imaging markers of the optic nerve and cerebrospinal fluid(CSF)in the optic nerve she...Objective This study aimed to develop and test a model for predicting dysthyroid optic neuropathy(DON)based on clinical factors and imaging markers of the optic nerve and cerebrospinal fluid(CSF)in the optic nerve sheath.Methods This retrospective study included patients with thyroid-associated ophthalmopathy(TAO)without DON and patients with TAO accompanied by DON at our hospital.The imaging markers of the optic nerve and CSF in the optic nerve sheath were measured on the water-fat images of each patient and,together with clinical factors,were screened by Least absolute shrinkage and selection operator.Subsequently,we constructed a prediction model using multivariate logistic regression.The accuracy of the model was verified using receiver operating characteristic curve analysis.Results In total,80 orbits from 44 DON patients and 90 orbits from 45 TAO patients were included in our study.Two variables(optic nerve subarachnoid space and the volume of the CSF in the optic nerve sheath)were found to be independent predictive factors and were included in the prediction model.In the development cohort,the mean area under the curve(AUC)was 0.994,with a sensitivity of 0.944,specificity of 0.967,and accuracy of 0.901.Moreover,in the validation cohort,the AUC was 0.960,the sensitivity was 0.889,the specificity was 0.893,and the accuracy was 0.890.Conclusions A combined model was developed using imaging data of the optic nerve and CSF in the optic nerve sheath,serving as a noninvasive potential tool to predict DON.展开更多
Objective:To analyze the effectiveness of applying ShuGan JieYu Capsules(SGJYC)combined with trazodone in patients with post-stroke depression(PSD)with insomnia.Methods:60 cases of PSD with insomnia patients admitted ...Objective:To analyze the effectiveness of applying ShuGan JieYu Capsules(SGJYC)combined with trazodone in patients with post-stroke depression(PSD)with insomnia.Methods:60 cases of PSD with insomnia patients admitted to the hospital from May 2022 to May 2023 were selected and randomly divided into a reference group(trazodone)and a research group(SGJYC combined with trazodone)of 30 cases each.Statistics were analyzed using the Hamilton Depression Rating Scale(HAM-D),Pittsburgh Sleep Quality Index(PSQI),and Activities of Daily Living(ADL)scale before treatment and 4,8,and 12 weeks after treatment.Results:Before treatment,The results of HAM-D,PSQI,and ADL scale studies in the two groups before treatment were not statistically significant(P>0.05);4,8,and 12 weeks after treatment,the results of HAM-D and PSQI studies in the research group were lower than that of the reference group,and the results of ADL scale studies were higher than that of the reference group.There was a significant difference between the groups(P<0.05).The total adverse reaction rate of the research group was lower than that of the reference group,and there was a significant difference between the groups(P<0.05).Conclusion:The combination of SGJYC and trazodone reduced depression in post-stroke patients,corrected insomnia,improved sleep quality,was safe,and had a low rate of adverse reactions.展开更多
The contact electrification(CE)between DI water and SiO_(2)or fluorinated polymer has been proven to be mainly due to electron transfer,which is significantly influenced by ions in solution.However,how these ions in w...The contact electrification(CE)between DI water and SiO_(2)or fluorinated polymer has been proven to be mainly due to electron transfer,which is significantly influenced by ions in solution.However,how these ions in water affect the charge transfer at the liquid-solid(L-S)interface is still unresolved,especially for the already charged friction layer.Here,a direct current droplet-based electricity generator(DC-DEG)which is sensitive to the change of charge transfer at the L-S interface is adopted to detect the effects of ions in the neutral salt solution on the charged PTFE surface.The distribution of ions on the charged L-S interface(the change of electric potential on the solid surface)and its effects on the output of DC-DEGs have been studied.The results indicate that the charge transfer of droplets and then the output of DC-DEGs are closely related to the concentrations of salt solutions.Anions can enhance the surface potential of PTFE due to their adsorptions on PFTE while cations can reduce it due to their screen effect.At low ionic concentrations,the surface potential enhancement caused by anion adsorption is larger than that surface potential reduction caused by screen effect from cations.At high ionic concentrations,the electrostatic screen effect of cations increases a lot to weaken the surface potential and reducing the charge separation of droplets induced by electrostatic induction(EI).This work explains the redistribution process of ions at the L-S interface and also provides a clever solution for improving the electrical output performance of DEGs.展开更多
In this paper, the principle of Cuckoo algorithm is introduced, and the traditional Cuckoo algorithm is improved to establish a mathematical model of multi-objective optimization scheduling. Based on the improved algo...In this paper, the principle of Cuckoo algorithm is introduced, and the traditional Cuckoo algorithm is improved to establish a mathematical model of multi-objective optimization scheduling. Based on the improved algorithm, the model is optimized to a certain extent. Through analysis, it is proved that the improved algorithm has higher computational accuracy and can effectively improve the global convergence.展开更多
Stratospheric airship is a special near-space air vehicle which has lots of advantages than other traditional flying aircrafts, such as long endurance, strong survival ability, low cost, excellent resolution detector ...Stratospheric airship is a special near-space air vehicle which has lots of advantages than other traditional flying aircrafts, such as long endurance, strong survival ability, low cost, excellent resolution detector etc. In addition, the stratospheric airship can be an ideal stratospheric bearing platform. This paper firstly gave an overview describing some technical differences between the stratospheric airship and the traditional airship, including the working environment, design specifications, structure characteristics, energy system, flying modes, and so on. Some technical difficulties including the materials, power system which apply to the stratospheric airship and deformation of the huge hull, super-heating effect, and station-keeping were discussed. Furthermore, technical target, technical specifications, design concept, and overview of flying tested about two stratospheric demonstration airships which were representative achievements of the research on the stratospheric airship in China were introduced. Finally, the predictions about the progress and direction of development were discussed.展开更多
基金supported by the National Key R&D Program of China(2018YFD1000902)the Natural Science Foundation of Shandong Province(ZR2021QC163).
文摘Continuous cropping(CC)obstacle is a major threat in legume crops production;however,the underlying mechanisms concerning the roles allelochemicals play in CC obstacle are poorly understood.The current 2-year study was conducted to investigate the effects of different kinds and concentrations of allelochemicals,p-hydroxybenzoic acid(H),cinnamic acid(C),phthalic acid(P),and their mixtures(M)on peanut root growth and productivity in response to CC obstacle.Treatment with H,C,P,and M significantly decreased the plant height,dry weight of the leaves and stems,number of branches,and length of the lateral stem compared with control.Exogenous application of H,C,P,and M inhibited the peanut root growth as indicated by the decreased root morphological characters.The allelochemicals also induced the cell membrane oxidation even though the antioxidant enzymes activities were significantly increased in peanut roots.Meanwhile,treatment with H,C,P,and M reduced the contents of total soluble sugar and total soluble protein.Analysis of ATPase activity,nitrate reductase activity,and root system activity revealed that the inhibition effects of allelochemicals on peanut roots might be due to the decrease in activities of ATPase and NR,and the inhibition of root system.Consequently,allelochemicals significantly decreased the pod yield of peanut compared with control.Our results demonstrate that allelochemicals play a dominant role in CC obstacle-induced peanut growth inhibition and yield reduction through damaging the root antioxidant system,unbalancing the osmolytes accumulation,and decreasing the activities of root-related enzymes.
基金Natural Science Foundation for Distinguished Young Scholars of Zhejiang Province,Grant/Award Number:LR20E020001Foundation of State Key Laboratory of Coal Conversion,Grant/Award Number:J20-21-909+4 种基金Science and Technology Department of Zhejiang Province,Grant/Award Number:2023C01231National Natural Science Foundation of China,Grant/Award Numbers:52372235,52073252,52002052,22379020,U20A20253,21972127,22279116Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment,Grant/Award Number:SKLPEE-KF202206Key Research and Development Project of Science and Technology Department of Sichuan Province,Grant/Award Number:2022YFSY0004Ministry of Education,Grant/Award Number:KFM 202202。
文摘Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herein,for the first time,we report a novel versatile hyphae-mediated biological assembly technology to achieve scale production of hyphae carbon fibers(HCFs)derivatives,in which different components including carbon,metal compounds,and semiconductors can be homogeneously assembled with HCFs to form composite networks.The mechanism of biological adsorption assembly is also proposed.As a representative,reduced graphene oxides(rGOs)decorated with hollow carbon spheres(HCSs)successfully co-assemble with HCFs to form HCSs@rGOs/HCFs hosts for sulfur cathodes.In this unique architecture,not only large accommodation space for sulfur but also restrained volume expansion and fast charge transport paths are realized.Meanwhile,multiscale physical barriers plus chemisorption sites are simultaneously established to anchor soluble lithium polysulfides.Accordingly,the designed HCSs@rGOs/HCFs-S cathodes deliver a high capacity(1189 mA h g^(-1)at 0.1 C)and good high-rate capability(686 mA h g^(-1)at 5 C).Our work provides a new approach for the preparation of high-performance carbon-based electrodes for energy storage devices.
基金support from the Natural Science Foundation of China(Grant Nos.41941018,U21A20153,42177140).
文摘The shear mechanical behavior is regarded as an essential factor affecting the stability of the surrounding rocks in underground engineering.The shear strength and failure mechanisms of layered rock are significantly affected by the foliation angles.Direct shear tests were conducted on cubic slate samples with foliation angles of 0°,30°,45°,60°,and 90°.The effect of foliation angles on failure patterns,acoustic emission(AE)characteristics,and shear strength parameters was analyzed.Based on AE characteristics,the slate failure process could be divided into four stages:quiet period,step-like increasing period,dramatic increasing period,and remission period.A new empirical expression of cohesion for layered rock was proposed,which was compared with linear and sinusoidal cohesion expressions based on the results made by this paper and previous experiments.The comparative analysis demonstrated that the new expression has better prediction ability than other expressions.The proposed empirical equation was used for direct shear simulations with the combined finite-discrete element method(FDEM),and it was found to align well with the experimental results.Considering both computational efficiency and accuracy,it was recommended to use a shear rate of 0.01 m/s for FDEM to carry out direct shear simulations.To balance the relationship between the number of elements and the simulation results in the direct shear simulations,the recommended element size is 1 mm.
文摘BACKGROUND Hepatocellular carcinoma(HCC)often presents as unresectable,necessitating effective treatment modalities.Combining transarterial chemoembolization(TACE)with immunotherapy and targeted therapy has shown promise,yet real-world evidence is needed.AIM To investigate effectiveness and safety of TACE with tislelizumab±targeted therapy for unresectable HCC in real-world setting.METHODS This retrospective study included patients with unresectable HCC receiving combined treatment of TACE and tislelizumab.The clinical outcomes included progression-free survival(PFS),overall survival(OS),objective response rate(ORR),and disease control rate(DCR).All patients were evaluated according to the mRECIST criteria.The adverse event(AE)was also assessed.RESULTS In this study of 56 patients with median follow-up of 10.9 months,7 had previous immunotherapy.Tislelizumab was administered before TACE in 21(37.50%)and after in 35(62.50%)patients,with 91.07%receiving concurrent targeted therapy.Median PFS was 14.0(95%CI:7.0-18.00)months,and OS was 28(95%CI:2.94-53.05)months.Patients with prior immunotherapy had shorter PFS(6 vs.18 months,P=0.006).Overall ORR and DCR were 82.14%and 87.50%.Grade≥3 treatment-related AEs included increased alanine aminotransferase(8.93%),aspartate aminotransferase(10.71%),and total bilirubin(3.57%).CONCLUSION The combination of TACE and tislelizumab,with or without targeted therapy,demonstrated promising efficacy and safety in unresectable HCC,especially in immunotherapy-naive patients,warranting further prospective validation studies.
基金supported by the National Natural Science Foundation of China(Grant No.41972265)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2021-57)+1 种基金the Gansu Province Science Foundation(Grant No.20JR10RA492)Special thanks to the Environmental Research and Education Foundation for supporting the first author(Y.Tan)through a fellowship for his study at the University of Wisconsin-Madison.
文摘Experiments were conducted to evaluate the healing of drying cracks in air-dried bentonite-sand blocks after hydration and swelling in groundwater,providing justifications to simplify the protection of blocks prior to installation in a high-level radioactive waste repository.Synthetic groundwater was prepared to represent the geochemistry of Beishan groundwater,and was used to hydrate the blocks during the swelling pressure and swelling strain measurements,as Beishan is the most promising site for China's repository.Healing of the surface cracks was recorded by photography,and healing of the internal cracks was visualized by CT images and hydraulic conductivity of air-dried blocks.The results indicate that the maximum swelling pressure and swelling strain are primarily affected by the geochemistry of Beishan groundwater,but not affected by the drying cracks.The maximum swelling pressure and swelling strain of air-dried blocks are comparable to or even higher than the pressure and strain of fresh blocks.The maximum swelling pressure measured in strong(i.e.high ion strength)Beishan groundwater was 44%of the pressure measured in deionized(DI)water,and the maximum swelling strain was reduced to 23%of the strain measured in DI water.Nevertheless,the remained swelling of the blocks hydrated in strong Beishan groundwater was sufficient to heal the surface and internal drying cracks,as demonstrated by the pictures of surface cracks and CT images.The hydraulic conductivity of the air-dried block permeated with strong groundwater was comparable(3.7×higher)to the hydraulic conductivity of the fresh block,indicating the self-healing of drying cracks after hydration and swelling in groundwater.A simplified method of protecting the block with plastic wraps before installation is recommended,since the remained swelling of the block hydrated in Beishan groundwater is sufficient to heal the drying cracks.
基金supported by the National Natural Science Foundation of China(nos.22168012 and 22208070)the Key Laboratory of Carbon-based Energy Molecular Chemical Utilization Technology in Guizhou Province(no.2023008)the Guizhou Province Outstanding Young Scientific and Technological Talents Program(no.YQK2023007).
文摘Water stability is one of the most important factors restricting the practical application of metal organic frameworks (MOFs). In this work, wefabricate a highly defective HKUST-1 framework with a mixed valence of CuI/CuIIby mechanical ball milling method. This defective HKUST-1is embellished by functionalized ionic liquids as hydrophobic armor, making the hybrid HIL1@HKUST-1 exhibits outstanding water stability,remarkable SO_(2) adsorption (up to 5.71 mmol g^(-1)), and record-breaking selectivity (1070 for SO_(2)/CO_(2) and 31,515 for SO_(2)/N_(2)) at 25 ℃ and0.1 bar, even in wet conditions.
基金Project supported by the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY222170)Jiangsu Specially-Appointed Professor Program,and Natural Science Foundation of Universities of Jiangsu Province(Grant No.TJ219008)the support of the open research fund of Key Laboratory of Quantum Materials and Devices(Southeast University),Ministry of Education。
文摘The self-intercalation of Cr into pristine two-dimensional(2D) van der Waals ferromagnetic CrTe_(2),which forms chromium tellurides(Cr_(x)Te_(2)),has garnered interest due to their remarkable magnetic characteristics and the wide variety of chemical compositions available.Here,comprehensive basic characterization and magnetic studies are conducted on quasi-2D ferromagnetic Cr_(1.04)Te_(2) crystals.Measurements of the isothermal magnetization curves are conducted around the critical temperature to systematically investigate the critical behavior.Specifically,the critical exponents β=0.2399,γ=0.859,and δ=4.3498,as well as the Curie temperature T_(C)=249.56 K,are determined using various methods,including the modified Arrott plots,the Kouvel-Fisher method,the Widom scaling method,and the critical isotherm analysis.These results indicate that the tricritical mean-field model accurately represents the critical behavior of Cr_(1.04)Te_(2.A magnetic phase diagram with tricritical phenomenon is thus constructed.Further investigations confirm that the critical exponents obtained conform to the scalar equation near T_(C),indicating their self-consistency and reliability.Our work sheds light on the magnetic properties of quasi-2D Cr_(1.04)Te_(2),broadening the scope of the van der Waals crystals for developments of future spintronic devices operable at room temperature.
基金supported financially by grants from the National Natural Science Foundation of China(No.81771793).
文摘Objective This study aimed to develop and test a model for predicting dysthyroid optic neuropathy(DON)based on clinical factors and imaging markers of the optic nerve and cerebrospinal fluid(CSF)in the optic nerve sheath.Methods This retrospective study included patients with thyroid-associated ophthalmopathy(TAO)without DON and patients with TAO accompanied by DON at our hospital.The imaging markers of the optic nerve and CSF in the optic nerve sheath were measured on the water-fat images of each patient and,together with clinical factors,were screened by Least absolute shrinkage and selection operator.Subsequently,we constructed a prediction model using multivariate logistic regression.The accuracy of the model was verified using receiver operating characteristic curve analysis.Results In total,80 orbits from 44 DON patients and 90 orbits from 45 TAO patients were included in our study.Two variables(optic nerve subarachnoid space and the volume of the CSF in the optic nerve sheath)were found to be independent predictive factors and were included in the prediction model.In the development cohort,the mean area under the curve(AUC)was 0.994,with a sensitivity of 0.944,specificity of 0.967,and accuracy of 0.901.Moreover,in the validation cohort,the AUC was 0.960,the sensitivity was 0.889,the specificity was 0.893,and the accuracy was 0.890.Conclusions A combined model was developed using imaging data of the optic nerve and CSF in the optic nerve sheath,serving as a noninvasive potential tool to predict DON.
基金Research Project on Heilongjiang Province Traditional Chinese Medicine No.ZHY2022-057。
文摘Objective:To analyze the effectiveness of applying ShuGan JieYu Capsules(SGJYC)combined with trazodone in patients with post-stroke depression(PSD)with insomnia.Methods:60 cases of PSD with insomnia patients admitted to the hospital from May 2022 to May 2023 were selected and randomly divided into a reference group(trazodone)and a research group(SGJYC combined with trazodone)of 30 cases each.Statistics were analyzed using the Hamilton Depression Rating Scale(HAM-D),Pittsburgh Sleep Quality Index(PSQI),and Activities of Daily Living(ADL)scale before treatment and 4,8,and 12 weeks after treatment.Results:Before treatment,The results of HAM-D,PSQI,and ADL scale studies in the two groups before treatment were not statistically significant(P>0.05);4,8,and 12 weeks after treatment,the results of HAM-D and PSQI studies in the research group were lower than that of the reference group,and the results of ADL scale studies were higher than that of the reference group.There was a significant difference between the groups(P<0.05).The total adverse reaction rate of the research group was lower than that of the reference group,and there was a significant difference between the groups(P<0.05).Conclusion:The combination of SGJYC and trazodone reduced depression in post-stroke patients,corrected insomnia,improved sleep quality,was safe,and had a low rate of adverse reactions.
基金supported by the National Natural Science Foundation of China(Grant No.12074321).
文摘The contact electrification(CE)between DI water and SiO_(2)or fluorinated polymer has been proven to be mainly due to electron transfer,which is significantly influenced by ions in solution.However,how these ions in water affect the charge transfer at the liquid-solid(L-S)interface is still unresolved,especially for the already charged friction layer.Here,a direct current droplet-based electricity generator(DC-DEG)which is sensitive to the change of charge transfer at the L-S interface is adopted to detect the effects of ions in the neutral salt solution on the charged PTFE surface.The distribution of ions on the charged L-S interface(the change of electric potential on the solid surface)and its effects on the output of DC-DEGs have been studied.The results indicate that the charge transfer of droplets and then the output of DC-DEGs are closely related to the concentrations of salt solutions.Anions can enhance the surface potential of PTFE due to their adsorptions on PFTE while cations can reduce it due to their screen effect.At low ionic concentrations,the surface potential enhancement caused by anion adsorption is larger than that surface potential reduction caused by screen effect from cations.At high ionic concentrations,the electrostatic screen effect of cations increases a lot to weaken the surface potential and reducing the charge separation of droplets induced by electrostatic induction(EI).This work explains the redistribution process of ions at the L-S interface and also provides a clever solution for improving the electrical output performance of DEGs.
文摘In this paper, the principle of Cuckoo algorithm is introduced, and the traditional Cuckoo algorithm is improved to establish a mathematical model of multi-objective optimization scheduling. Based on the improved algorithm, the model is optimized to a certain extent. Through analysis, it is proved that the improved algorithm has higher computational accuracy and can effectively improve the global convergence.
文摘Stratospheric airship is a special near-space air vehicle which has lots of advantages than other traditional flying aircrafts, such as long endurance, strong survival ability, low cost, excellent resolution detector etc. In addition, the stratospheric airship can be an ideal stratospheric bearing platform. This paper firstly gave an overview describing some technical differences between the stratospheric airship and the traditional airship, including the working environment, design specifications, structure characteristics, energy system, flying modes, and so on. Some technical difficulties including the materials, power system which apply to the stratospheric airship and deformation of the huge hull, super-heating effect, and station-keeping were discussed. Furthermore, technical target, technical specifications, design concept, and overview of flying tested about two stratospheric demonstration airships which were representative achievements of the research on the stratospheric airship in China were introduced. Finally, the predictions about the progress and direction of development were discussed.
基金Supported by the Tai'an City Science and Technology Planning Program(No.2017NS0156)the High-School Scientific Research Development Program of Shandong Province(No.2016J16LL57)the Natural Scientific Foundation of Shandong Province(No.ZR2014CL011)~~