This study demonstrates that beyond standard model (BSM) cosmic fundamental interactions—weak, strong, and electromagnetic forces—can be unified through a common basis of representation. This unification allows for ...This study demonstrates that beyond standard model (BSM) cosmic fundamental interactions—weak, strong, and electromagnetic forces—can be unified through a common basis of representation. This unification allows for the derivation of the fine structure constant with running points of α(t) ≈ 1/(136.9038) at high energy scales, based on electroweak interactions. Through the application of the Ising model, the running point of the elementary charge e at high energy scales is determined, and Coulomb’s law is actually derived from the Yukawa potential. Theoretically, based on S. Weinberg’s electroweak interaction theory, this study unifies the strong and electromagnetic forces by representing them with rYuka, and further advances the reconstruction of the SU(3)C×SU(1)L×U(1)EMframework on the basis of electroweak interaction concepts. In fact, the cosmic fundamental forces can interchange at the mass gap, defined as the Yukawa turning phase at rYuka ≃1.9404 fm, with the SU(3)Diag structural constant fijk on glueballs calculated, estimating a spectrum mass gap of ∆0 > 0.展开更多
Condensed state physics demonstrates that the Curie temperature is the point at which spontaneous magnetization drops to zero, marking the critical transition where ferromagnetic or ferrimagnetic materials transform i...Condensed state physics demonstrates that the Curie temperature is the point at which spontaneous magnetization drops to zero, marking the critical transition where ferromagnetic or ferrimagnetic materials transform into paramagnetic substances. Below the Curie temperature, a material remains ferromagnetic;above it, the material becomes paramagnetic, with its magnetic field easily influenced by external magnetic fileds. For example, the Curie temperature of iron (Fe) is 1043 K, while that of neodymium magnets ranges from 583 to 673 K. From both physics and mathematics perspectives, examining the temperature properties of materials is essential, as it provides valuable insights into their electromagnetic and thermodynamic behaviors. This paper makes a bold assumption and, for the first time, carefully verifies the existence of a Casimir temperature at 0.00206 K under conditions of one-atomic spacing.展开更多
This paper indicates the problem of the famous Riemann hypothesis (RH), which has been well-verified by a definite answering method using a Bose-Einstein Condensate (BEC) phase. We adopt mathematical induction, mappin...This paper indicates the problem of the famous Riemann hypothesis (RH), which has been well-verified by a definite answering method using a Bose-Einstein Condensate (BEC) phase. We adopt mathematical induction, mappings, and laser photons governed by electromagnetically induced transparency (EIT) to examine the existence of the RH. In considering the well-developed as Riemann zeta function, we find that the existence of RH has a corrected and self-consistent solution. Specifically, there is the only one pole at s = 1 on the complex plane for Riemann’s functions, which generalizes to all non-trivial zeros while s > 1. The essential solution is based on the BEC phases and on the nature of the laser photon(s). This work also incorporates Heisenberg commutators [ x^,p^]=1/2in the field of quantum mechanics. We found that a satisfactory solution for the RH would be incomplete without the formalism of Heisenberg commutators, BEC phases, and EIT effects. Ultimately, we propose the application of qubits in connection with the RH.展开更多
In this paper, we explore the classification of vibration modes generated by handwriting on an optical desk using deep learning architectures. Three deep learning models—Long Short-Term Memory (LSTM) networks with at...In this paper, we explore the classification of vibration modes generated by handwriting on an optical desk using deep learning architectures. Three deep learning models—Long Short-Term Memory (LSTM) networks with attention mechanism, Video Vision Transformer (ViViT), and Long-term Recurrent Convolutional Network (LRCN)—were evaluated to determine the most effective method for analyzing time series patterns generated by a Michelson interferometer. The interferometer was used to detect vibration modes created by handwriting, capturing time-series data from the diffraction patterns. Among these models, the LSTM-Attention network achieved the highest validation accuracy, reaching up to 92%, outperforming both ViViT and LRCN. These findings highlight the potential of deep learning in material science for detecting and classifying vibration patterns. The powerful performance of the LSTM-Attention model suggests that it could be applied to similar classification tasks in related fields.展开更多
The study of magnetic monopoles continues to be a prominent and captivating topic in physics, particularly within the realm of physical materials. Recently, K. C. Tan, Hariom Jani, Michael Högen, and their collab...The study of magnetic monopoles continues to be a prominent and captivating topic in physics, particularly within the realm of physical materials. Recently, K. C. Tan, Hariom Jani, Michael Högen, and their collaborators (2023) reported groundbreaking discoveries, marking significant progress in this field. However, a sense of dissatisfaction persists among researchers regarding the current state of advancement. To address this, we propose a novel theoretical framework that explores magnetic monopoles through the lens of Higgs field portals. Our findings indicate that the spin of the magnetic monopole, s = 1, is intrinsically linked to the fundamental expression governing its behavior, with the two aspects being inseparable in practical terms. This theory offers a deeper understanding of the inherent nature of magnetic monopoles and provides a foundation for further exploration.展开更多
文摘This study demonstrates that beyond standard model (BSM) cosmic fundamental interactions—weak, strong, and electromagnetic forces—can be unified through a common basis of representation. This unification allows for the derivation of the fine structure constant with running points of α(t) ≈ 1/(136.9038) at high energy scales, based on electroweak interactions. Through the application of the Ising model, the running point of the elementary charge e at high energy scales is determined, and Coulomb’s law is actually derived from the Yukawa potential. Theoretically, based on S. Weinberg’s electroweak interaction theory, this study unifies the strong and electromagnetic forces by representing them with rYuka, and further advances the reconstruction of the SU(3)C×SU(1)L×U(1)EMframework on the basis of electroweak interaction concepts. In fact, the cosmic fundamental forces can interchange at the mass gap, defined as the Yukawa turning phase at rYuka ≃1.9404 fm, with the SU(3)Diag structural constant fijk on glueballs calculated, estimating a spectrum mass gap of ∆0 > 0.
文摘Condensed state physics demonstrates that the Curie temperature is the point at which spontaneous magnetization drops to zero, marking the critical transition where ferromagnetic or ferrimagnetic materials transform into paramagnetic substances. Below the Curie temperature, a material remains ferromagnetic;above it, the material becomes paramagnetic, with its magnetic field easily influenced by external magnetic fileds. For example, the Curie temperature of iron (Fe) is 1043 K, while that of neodymium magnets ranges from 583 to 673 K. From both physics and mathematics perspectives, examining the temperature properties of materials is essential, as it provides valuable insights into their electromagnetic and thermodynamic behaviors. This paper makes a bold assumption and, for the first time, carefully verifies the existence of a Casimir temperature at 0.00206 K under conditions of one-atomic spacing.
文摘This paper indicates the problem of the famous Riemann hypothesis (RH), which has been well-verified by a definite answering method using a Bose-Einstein Condensate (BEC) phase. We adopt mathematical induction, mappings, and laser photons governed by electromagnetically induced transparency (EIT) to examine the existence of the RH. In considering the well-developed as Riemann zeta function, we find that the existence of RH has a corrected and self-consistent solution. Specifically, there is the only one pole at s = 1 on the complex plane for Riemann’s functions, which generalizes to all non-trivial zeros while s > 1. The essential solution is based on the BEC phases and on the nature of the laser photon(s). This work also incorporates Heisenberg commutators [ x^,p^]=1/2in the field of quantum mechanics. We found that a satisfactory solution for the RH would be incomplete without the formalism of Heisenberg commutators, BEC phases, and EIT effects. Ultimately, we propose the application of qubits in connection with the RH.
文摘In this paper, we explore the classification of vibration modes generated by handwriting on an optical desk using deep learning architectures. Three deep learning models—Long Short-Term Memory (LSTM) networks with attention mechanism, Video Vision Transformer (ViViT), and Long-term Recurrent Convolutional Network (LRCN)—were evaluated to determine the most effective method for analyzing time series patterns generated by a Michelson interferometer. The interferometer was used to detect vibration modes created by handwriting, capturing time-series data from the diffraction patterns. Among these models, the LSTM-Attention network achieved the highest validation accuracy, reaching up to 92%, outperforming both ViViT and LRCN. These findings highlight the potential of deep learning in material science for detecting and classifying vibration patterns. The powerful performance of the LSTM-Attention model suggests that it could be applied to similar classification tasks in related fields.
文摘The study of magnetic monopoles continues to be a prominent and captivating topic in physics, particularly within the realm of physical materials. Recently, K. C. Tan, Hariom Jani, Michael Högen, and their collaborators (2023) reported groundbreaking discoveries, marking significant progress in this field. However, a sense of dissatisfaction persists among researchers regarding the current state of advancement. To address this, we propose a novel theoretical framework that explores magnetic monopoles through the lens of Higgs field portals. Our findings indicate that the spin of the magnetic monopole, s = 1, is intrinsically linked to the fundamental expression governing its behavior, with the two aspects being inseparable in practical terms. This theory offers a deeper understanding of the inherent nature of magnetic monopoles and provides a foundation for further exploration.