With the development of hardware devices and the upgrading of smartphones,a large number of users save privacy-related information in mobile devices,mainly smartphones,which puts forward higher demands on the protecti...With the development of hardware devices and the upgrading of smartphones,a large number of users save privacy-related information in mobile devices,mainly smartphones,which puts forward higher demands on the protection of mobile users’privacy information.At present,mobile user authenticationmethods based on humancomputer interaction have been extensively studied due to their advantages of high precision and non-perception,but there are still shortcomings such as low data collection efficiency,untrustworthy participating nodes,and lack of practicability.To this end,this paper proposes a privacy-enhanced mobile user authentication method with motion sensors,which mainly includes:(1)Construct a smart contract-based private chain and federated learning to improve the data collection efficiency of mobile user authentication,reduce the probability of the model being bypassed by attackers,and reduce the overhead of data centralized processing and the risk of privacy leakage;(2)Use certificateless encryption to realize the authentication of the device to ensure the credibility of the client nodes participating in the calculation;(3)Combine Variational Mode Decomposition(VMD)and Long Short-TermMemory(LSTM)to analyze and model the motion sensor data of mobile devices to improve the accuracy of model certification.The experimental results on the real environment dataset of 1513 people show that themethod proposed in this paper can effectively resist poisoning attacks while ensuring the accuracy and efficiency of mobile user authentication.展开更多
With the intelligentization of the Internet of Vehicles(lovs),Artificial Intelligence(Al)technology is becoming more and more essential,especially deep learning.Federated Deep Learning(FDL)is a novel distributed machi...With the intelligentization of the Internet of Vehicles(lovs),Artificial Intelligence(Al)technology is becoming more and more essential,especially deep learning.Federated Deep Learning(FDL)is a novel distributed machine learning technology and is able to address the challenges like data security,privacy risks,and huge communication overheads from big raw data sets.However,FDL can only guarantee data security and privacy among multiple clients during data training.If the data sets stored locally in clients are corrupted,including being tampered with and lost,the training results of the FDL in intelligent IoVs must be negatively affected.In this paper,we are the first to design a secure data auditing protocol to guarantee the integrity and availability of data sets in FDL-empowered IoVs.Specifically,the cuckoo filter and Reed-Solomon codes are utilized to guarantee error tolerance,including efficient corrupted data locating and recovery.In addition,a novel data structure,Skip Hash Table(SHT)is designed to optimize data dynamics.Finally,we illustrate the security of the scheme with the Computational Diffie-Hellman(CDH)assumption on bilinear groups.Sufficient theoretical analyses and performance evaluations demonstrate the security and efficiency of our scheme for data sets in FDL-empowered IoVs.展开更多
Sensors produce a large amount of multivariate time series data to record the states of Internet of Things(IoT)systems.Multivariate time series timestamp anomaly detection(TSAD)can identify timestamps of attacks and m...Sensors produce a large amount of multivariate time series data to record the states of Internet of Things(IoT)systems.Multivariate time series timestamp anomaly detection(TSAD)can identify timestamps of attacks and malfunctions.However,it is necessary to determine which sensor or indicator is abnormal to facilitate a more detailed diagnosis,a process referred to as fine-grained anomaly detection(FGAD).Although further FGAD can be extended based on TSAD methods,existing works do not provide a quantitative evaluation,and the performance is unknown.Therefore,to tackle the FGAD problem,this paper first verifies that the TSAD methods achieve low performance when applied to the FGAD task directly because of the excessive fusion of features and the ignoring of the relationship’s dynamic changes between indicators.Accordingly,this paper proposes a mul-tivariate time series fine-grained anomaly detection(MFGAD)framework.To avoid excessive fusion of features,MFGAD constructs two sub-models to independently identify the abnormal timestamp and abnormal indicator instead of a single model and then combines the two kinds of abnormal results to detect the fine-grained anomaly.Based on this framework,an algorithm based on Graph Attention Neural Network(GAT)and Attention Convolutional Long-Short Term Memory(A-ConvLSTM)is proposed,in which GAT learns temporal features of multiple indicators to detect abnormal timestamps and A-ConvLSTM captures the dynamic relationship between indicators to identify abnormal indicators.Extensive simulations on a real-world dataset demonstrate that the proposed algorithm can achieve a higher F1 score and hit rate than the extension of existing TSAD methods with the benefit of two independent sub-models for timestamp and indicator detection.展开更多
Image-denoising techniques are widely used to defend against Adversarial Examples(AEs).However,denoising alone cannot completely eliminate adversarial perturbations.The remaining perturbations tend to amplify as they ...Image-denoising techniques are widely used to defend against Adversarial Examples(AEs).However,denoising alone cannot completely eliminate adversarial perturbations.The remaining perturbations tend to amplify as they propagate through deeper layers of the network,leading to misclassifications.Moreover,image denoising compromises the classification accuracy of original examples.To address these challenges in AE defense through image denoising,this paper proposes a novel AE detection technique.The proposed technique combines multiple traditional image-denoising algorithms and Convolutional Neural Network(CNN)network structures.The used detector model integrates the classification results of different models as the input to the detector and calculates the final output of the detector based on a machine-learning voting algorithm.By analyzing the discrepancy between predictions made by the model on original examples and denoised examples,AEs are detected effectively.This technique reduces computational overhead without modifying the model structure or parameters,effectively avoiding the error amplification caused by denoising.The proposed approach demonstrates excellent detection performance against mainstream AE attacks.Experimental results show outstanding detection performance in well-known AE attacks,including Fast Gradient Sign Method(FGSM),Basic Iteration Method(BIM),DeepFool,and Carlini&Wagner(C&W),achieving a 94%success rate in FGSM detection,while only reducing the accuracy of clean examples by 4%.展开更多
The medical community has more concern on lung cancer analysis.Medical experts’physical segmentation of lung cancers is time-consuming and needs to be automated.The research study’s objective is to diagnose lung tum...The medical community has more concern on lung cancer analysis.Medical experts’physical segmentation of lung cancers is time-consuming and needs to be automated.The research study’s objective is to diagnose lung tumors at an early stage to extend the life of humans using deep learning techniques.Computer-Aided Diagnostic(CAD)system aids in the diagnosis and shortens the time necessary to detect the tumor detected.The application of Deep Neural Networks(DNN)has also been exhibited as an excellent and effective method in classification and segmentation tasks.This research aims to separate lung cancers from images of Magnetic Resonance Imaging(MRI)with threshold segmentation.The Honey hook process categorizes lung cancer based on characteristics retrieved using several classifiers.Considering this principle,the work presents a solution for image compression utilizing a Deep Wave Auto-Encoder(DWAE).The combination of the two approaches significantly reduces the overall size of the feature set required for any future classification process performed using DNN.The proposed DWAE-DNN image classifier is applied to a lung imaging dataset with Radial Basis Function(RBF)classifier.The study reported promising results with an accuracy of 97.34%,whereas using the Decision Tree(DT)classifier has an accuracy of 94.24%.The proposed approach(DWAE-DNN)is found to classify the images with an accuracy of 98.67%,either as malignant or normal patients.In contrast to the accuracy requirements,the work also uses the benchmark standards like specificity,sensitivity,and precision to evaluate the efficiency of the network.It is found from an investigation that the DT classifier provides the maximum performance in the DWAE-DNN depending on the network’s performance on image testing,as shown by the data acquired by the categorizers themselves.展开更多
In the Internet of Things(IoT)system,relay communication is widely used to solve the problem of energy loss in long-distance transmission and improve transmission efficiency.In Body Sensor Network(BSN)systems,biosenso...In the Internet of Things(IoT)system,relay communication is widely used to solve the problem of energy loss in long-distance transmission and improve transmission efficiency.In Body Sensor Network(BSN)systems,biosensors communicate with receiving devices through relay nodes to improve their limited energy efficiency.When the relay node fails,the biosensor can communicate directly with the receiving device by releasing more transmitting power.However,if the remaining battery power of the biosensor is insufficient to enable it to communicate directly with the receiving device,the biosensor will be isolated by the system.Therefore,a new combinatorial analysis method is proposed to analyze the influence of random isolation time(RIT)on system reliability,and the competition relationship between biosensor isolation and propagation failure is considered.This approach inherits the advantages of common combinatorial algorithms and provides a new approach to effectively address the impact of RIT on system reliability in IoT systems,which are affected by competing failures.Finally,the method is applied to the BSN system,and the effect of RIT on the system reliability is analyzed in detail.展开更多
基金Wenzhou Key Scientific and Technological Projects(No.ZG2020031)Wenzhou Polytechnic Research Projects(No.WZY2021002)+3 种基金Key R&D Projects in Zhejiang Province(No.2021C01117)Major Program of Natural Science Foundation of Zhejiang Province(LD22F020002)the Cloud Security Key Technology Research Laboratorythe Researchers Supporting Project Number(RSP2023R509),King Saud University,Riyadh,Saudi Arabia.
文摘With the development of hardware devices and the upgrading of smartphones,a large number of users save privacy-related information in mobile devices,mainly smartphones,which puts forward higher demands on the protection of mobile users’privacy information.At present,mobile user authenticationmethods based on humancomputer interaction have been extensively studied due to their advantages of high precision and non-perception,but there are still shortcomings such as low data collection efficiency,untrustworthy participating nodes,and lack of practicability.To this end,this paper proposes a privacy-enhanced mobile user authentication method with motion sensors,which mainly includes:(1)Construct a smart contract-based private chain and federated learning to improve the data collection efficiency of mobile user authentication,reduce the probability of the model being bypassed by attackers,and reduce the overhead of data centralized processing and the risk of privacy leakage;(2)Use certificateless encryption to realize the authentication of the device to ensure the credibility of the client nodes participating in the calculation;(3)Combine Variational Mode Decomposition(VMD)and Long Short-TermMemory(LSTM)to analyze and model the motion sensor data of mobile devices to improve the accuracy of model certification.The experimental results on the real environment dataset of 1513 people show that themethod proposed in this paper can effectively resist poisoning attacks while ensuring the accuracy and efficiency of mobile user authentication.
基金supported by the National Natural Science Foundation of China under Grants No.U1836115,No.61922045,No.61877034,No.61772280the Natural Science Foundation of Jiangsu Province under Grant No.BK20181408+2 种基金the Peng Cheng Laboratory Project of Guangdong Province PCL2018KP004the CICAEET fundthe PAPD fund.
文摘With the intelligentization of the Internet of Vehicles(lovs),Artificial Intelligence(Al)technology is becoming more and more essential,especially deep learning.Federated Deep Learning(FDL)is a novel distributed machine learning technology and is able to address the challenges like data security,privacy risks,and huge communication overheads from big raw data sets.However,FDL can only guarantee data security and privacy among multiple clients during data training.If the data sets stored locally in clients are corrupted,including being tampered with and lost,the training results of the FDL in intelligent IoVs must be negatively affected.In this paper,we are the first to design a secure data auditing protocol to guarantee the integrity and availability of data sets in FDL-empowered IoVs.Specifically,the cuckoo filter and Reed-Solomon codes are utilized to guarantee error tolerance,including efficient corrupted data locating and recovery.In addition,a novel data structure,Skip Hash Table(SHT)is designed to optimize data dynamics.Finally,we illustrate the security of the scheme with the Computational Diffie-Hellman(CDH)assumption on bilinear groups.Sufficient theoretical analyses and performance evaluations demonstrate the security and efficiency of our scheme for data sets in FDL-empowered IoVs.
基金supported in part by the National Natural Science Foundation of China under Grant 62272062the Researchers Supporting Project number.(RSP2023R102)King Saud University+5 种基金Riyadh,Saudi Arabia,the Open Research Fund of the Hunan Provincial Key Laboratory of Network Investigational Technology under Grant 2018WLZC003the National Science Foundation of Hunan Province under Grant 2020JJ2029the Hunan Provincial Key Research and Development Program under Grant 2022GK2019the Science Fund for Creative Research Groups of Hunan Province under Grant 2020JJ1006the Scientific Research Fund of Hunan Provincial Transportation Department under Grant 202143the Open Fund of Key Laboratory of Safety Control of Bridge Engineering,Ministry of Education(Changsha University of Science Technology)under Grant 21KB07.
文摘Sensors produce a large amount of multivariate time series data to record the states of Internet of Things(IoT)systems.Multivariate time series timestamp anomaly detection(TSAD)can identify timestamps of attacks and malfunctions.However,it is necessary to determine which sensor or indicator is abnormal to facilitate a more detailed diagnosis,a process referred to as fine-grained anomaly detection(FGAD).Although further FGAD can be extended based on TSAD methods,existing works do not provide a quantitative evaluation,and the performance is unknown.Therefore,to tackle the FGAD problem,this paper first verifies that the TSAD methods achieve low performance when applied to the FGAD task directly because of the excessive fusion of features and the ignoring of the relationship’s dynamic changes between indicators.Accordingly,this paper proposes a mul-tivariate time series fine-grained anomaly detection(MFGAD)framework.To avoid excessive fusion of features,MFGAD constructs two sub-models to independently identify the abnormal timestamp and abnormal indicator instead of a single model and then combines the two kinds of abnormal results to detect the fine-grained anomaly.Based on this framework,an algorithm based on Graph Attention Neural Network(GAT)and Attention Convolutional Long-Short Term Memory(A-ConvLSTM)is proposed,in which GAT learns temporal features of multiple indicators to detect abnormal timestamps and A-ConvLSTM captures the dynamic relationship between indicators to identify abnormal indicators.Extensive simulations on a real-world dataset demonstrate that the proposed algorithm can achieve a higher F1 score and hit rate than the extension of existing TSAD methods with the benefit of two independent sub-models for timestamp and indicator detection.
基金supported in part by the Natural Science Foundation of Hunan Province under Grant Nos.2023JJ30316 and 2022JJ2029in part by a project supported by Scientific Research Fund of Hunan Provincial Education Department under Grant No.22A0686+1 种基金in part by the National Natural Science Foundation of China under Grant No.62172058Researchers Supporting Project(No.RSP2023R102)King Saud University,Riyadh,Saudi Arabia.
文摘Image-denoising techniques are widely used to defend against Adversarial Examples(AEs).However,denoising alone cannot completely eliminate adversarial perturbations.The remaining perturbations tend to amplify as they propagate through deeper layers of the network,leading to misclassifications.Moreover,image denoising compromises the classification accuracy of original examples.To address these challenges in AE defense through image denoising,this paper proposes a novel AE detection technique.The proposed technique combines multiple traditional image-denoising algorithms and Convolutional Neural Network(CNN)network structures.The used detector model integrates the classification results of different models as the input to the detector and calculates the final output of the detector based on a machine-learning voting algorithm.By analyzing the discrepancy between predictions made by the model on original examples and denoised examples,AEs are detected effectively.This technique reduces computational overhead without modifying the model structure or parameters,effectively avoiding the error amplification caused by denoising.The proposed approach demonstrates excellent detection performance against mainstream AE attacks.Experimental results show outstanding detection performance in well-known AE attacks,including Fast Gradient Sign Method(FGSM),Basic Iteration Method(BIM),DeepFool,and Carlini&Wagner(C&W),achieving a 94%success rate in FGSM detection,while only reducing the accuracy of clean examples by 4%.
基金the Researchers Supporting Project Number(RSP2023R 509)King Saud University,Riyadh,Saudi ArabiaThis work was supported in part by the Higher Education Sprout Project from the Ministry of Education(MOE)and National Science and Technology Council,Taiwan,(109-2628-E-224-001-MY3)in part by Isuzu Optics Corporation.Dr.Shih-Yu Chen is the corresponding author.
文摘The medical community has more concern on lung cancer analysis.Medical experts’physical segmentation of lung cancers is time-consuming and needs to be automated.The research study’s objective is to diagnose lung tumors at an early stage to extend the life of humans using deep learning techniques.Computer-Aided Diagnostic(CAD)system aids in the diagnosis and shortens the time necessary to detect the tumor detected.The application of Deep Neural Networks(DNN)has also been exhibited as an excellent and effective method in classification and segmentation tasks.This research aims to separate lung cancers from images of Magnetic Resonance Imaging(MRI)with threshold segmentation.The Honey hook process categorizes lung cancer based on characteristics retrieved using several classifiers.Considering this principle,the work presents a solution for image compression utilizing a Deep Wave Auto-Encoder(DWAE).The combination of the two approaches significantly reduces the overall size of the feature set required for any future classification process performed using DNN.The proposed DWAE-DNN image classifier is applied to a lung imaging dataset with Radial Basis Function(RBF)classifier.The study reported promising results with an accuracy of 97.34%,whereas using the Decision Tree(DT)classifier has an accuracy of 94.24%.The proposed approach(DWAE-DNN)is found to classify the images with an accuracy of 98.67%,either as malignant or normal patients.In contrast to the accuracy requirements,the work also uses the benchmark standards like specificity,sensitivity,and precision to evaluate the efficiency of the network.It is found from an investigation that the DT classifier provides the maximum performance in the DWAE-DNN depending on the network’s performance on image testing,as shown by the data acquired by the categorizers themselves.
基金supported by the National Natural Science Foundation of China(NSFC)(GrantNo.62172058)the Hunan ProvincialNatural Science Foundation of China(Grant Nos.2022JJ10052,2022JJ30624).
文摘In the Internet of Things(IoT)system,relay communication is widely used to solve the problem of energy loss in long-distance transmission and improve transmission efficiency.In Body Sensor Network(BSN)systems,biosensors communicate with receiving devices through relay nodes to improve their limited energy efficiency.When the relay node fails,the biosensor can communicate directly with the receiving device by releasing more transmitting power.However,if the remaining battery power of the biosensor is insufficient to enable it to communicate directly with the receiving device,the biosensor will be isolated by the system.Therefore,a new combinatorial analysis method is proposed to analyze the influence of random isolation time(RIT)on system reliability,and the competition relationship between biosensor isolation and propagation failure is considered.This approach inherits the advantages of common combinatorial algorithms and provides a new approach to effectively address the impact of RIT on system reliability in IoT systems,which are affected by competing failures.Finally,the method is applied to the BSN system,and the effect of RIT on the system reliability is analyzed in detail.