The vanadium oxide/reduced graphene oxide(V2 O5/rGO) composite catalyst which determined the selective catalytic reduction activity(SCR) of NO with NH3 was prepared by a simple solvothermal method. The physicochem...The vanadium oxide/reduced graphene oxide(V2 O5/rGO) composite catalyst which determined the selective catalytic reduction activity(SCR) of NO with NH3 was prepared by a simple solvothermal method. The physicochemical properties of the catalysts were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), Raman, X-ray energy spectrometer(XPS) and N2 sorption isotherm measurement(BET). Results of NH3-SCR showed that the NO conversion of V2 O5/rGO catalyst could reach 54.3% at 100 ℃. And the removal of NO increased to 74.6% when the temperature was up to 220 ℃. By characterizing the microstructure and morphology of the V2 O5/rGO catalysts prepared by in-situ growth and mechanical mixing methods, it was further shown that V2 O5 nanoparticles were highly dispersed and in situ growth on the rGO surface. Based on X-ray energy spectrometer, V2 O5/r GO catalyst had good low temperature denitrification performance due to the chemical adsorption oxygen and low-valent vanadium oxide contained in V2 O5/rGO catalyst, which was beneficial to the redox reaction between V2 O5 and graphene.展开更多
To explore ways to improve the accuracy of quantitative analysis of samples in the micrometer to nanometer range of magnitudes,we adopted analytical transmission electron microscopy(AEM/EDS)for qualitative and quantit...To explore ways to improve the accuracy of quantitative analysis of samples in the micrometer to nanometer range of magnitudes,we adopted analytical transmission electron microscopy(AEM/EDS)for qualitative and quantitative analysis of pyrite materials.Additionally,the k factor of pyrite is calculated experimentally.To develop an appropriate non-standard quantitative analysis model for pyrite materials,the experimentally calculated k factor is compared with that estimated from the non-standard quantitative analytical model of the instrument software.The experimental findings demonstrate that the EDS attached to a TEM can be employed for precise quantitative analysis of micro-and nanoscale regions of pyrite materials.Furthermore,it serves as a reference for improving the results of the EDS quantitative analysis of other sulfides.展开更多
MoO_2 nanocrystals(NCs) on Ni foam were simply synthesized via a facile hydrothermal method and a dip-coating method. It was worth noting that ultrafine interconnected MoO_2 nanocrystals(about 10 nm) were uniformly an...MoO_2 nanocrystals(NCs) on Ni foam were simply synthesized via a facile hydrothermal method and a dip-coating method. It was worth noting that ultrafine interconnected MoO_2 nanocrystals(about 10 nm) were uniformly anchored on Ni foam to fabricate a particular three-dimensional architecture, which may provide more active sites and shorter transmission pathways for lithium ions. As binder-free anode, MoO_2 NCs on Ni foam deliver a high initial discharge capacity of 990 mAh·g^(-1) and retain a reversible capacity of 924 mAh· g(-1) after 100 cycles at a current density of 0.1 C. More importantly, when the current density returns from 2 C to 0.1 C, the capacity recovers to 910 mAh·g(-1)(about 92% of the original high capacity), suggesting excellent cycling stability and rate capability. The particular 3 D electrode as binder-free anode makes it a promising anode candidate for high-performance lithium-ion batteries.展开更多
基金Funded by the National Natural Science Foundation of China(No.51506155)Wuhan Science and Technology Project(No.2016010101010020)
文摘The vanadium oxide/reduced graphene oxide(V2 O5/rGO) composite catalyst which determined the selective catalytic reduction activity(SCR) of NO with NH3 was prepared by a simple solvothermal method. The physicochemical properties of the catalysts were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), Raman, X-ray energy spectrometer(XPS) and N2 sorption isotherm measurement(BET). Results of NH3-SCR showed that the NO conversion of V2 O5/rGO catalyst could reach 54.3% at 100 ℃. And the removal of NO increased to 74.6% when the temperature was up to 220 ℃. By characterizing the microstructure and morphology of the V2 O5/rGO catalysts prepared by in-situ growth and mechanical mixing methods, it was further shown that V2 O5 nanoparticles were highly dispersed and in situ growth on the rGO surface. Based on X-ray energy spectrometer, V2 O5/r GO catalyst had good low temperature denitrification performance due to the chemical adsorption oxygen and low-valent vanadium oxide contained in V2 O5/rGO catalyst, which was beneficial to the redox reaction between V2 O5 and graphene.
基金Funded by the International Science&Technology Cooperation Program of Hubei Province of China(No.2022EHB024)。
文摘To explore ways to improve the accuracy of quantitative analysis of samples in the micrometer to nanometer range of magnitudes,we adopted analytical transmission electron microscopy(AEM/EDS)for qualitative and quantitative analysis of pyrite materials.Additionally,the k factor of pyrite is calculated experimentally.To develop an appropriate non-standard quantitative analysis model for pyrite materials,the experimentally calculated k factor is compared with that estimated from the non-standard quantitative analytical model of the instrument software.The experimental findings demonstrate that the EDS attached to a TEM can be employed for precise quantitative analysis of micro-and nanoscale regions of pyrite materials.Furthermore,it serves as a reference for improving the results of the EDS quantitative analysis of other sulfides.
基金Funded by the National Natural Science Foundation of China(51506155)
文摘MoO_2 nanocrystals(NCs) on Ni foam were simply synthesized via a facile hydrothermal method and a dip-coating method. It was worth noting that ultrafine interconnected MoO_2 nanocrystals(about 10 nm) were uniformly anchored on Ni foam to fabricate a particular three-dimensional architecture, which may provide more active sites and shorter transmission pathways for lithium ions. As binder-free anode, MoO_2 NCs on Ni foam deliver a high initial discharge capacity of 990 mAh·g^(-1) and retain a reversible capacity of 924 mAh· g(-1) after 100 cycles at a current density of 0.1 C. More importantly, when the current density returns from 2 C to 0.1 C, the capacity recovers to 910 mAh·g(-1)(about 92% of the original high capacity), suggesting excellent cycling stability and rate capability. The particular 3 D electrode as binder-free anode makes it a promising anode candidate for high-performance lithium-ion batteries.