The need is pressing to investigate soil CO2 (carbon dioxide) emissions and soil organic carbon dynamics under water-saving irrigation practices in agricultural systems for exploring the potentials of soil carbon se...The need is pressing to investigate soil CO2 (carbon dioxide) emissions and soil organic carbon dynamics under water-saving irrigation practices in agricultural systems for exploring the potentials of soil carbon sequestration. A field experiment was conducted to compare the influences of drip irrigation (DI) and flood irrigation (FI) on soil organic carbon dynamics and the spatial and temporal variations in CO2 emissions during the summer maize growing season in the North China Plain using the static closed chamber method. The mean CO2 efflux over the growing season was larger under DI than that under FI. The cumulative CO2 emissions at the field scale were 1959.10 and 1759.12 g/m2 under DI and FI, respectively. The cumulative CO2 emission on plant rows (OR) was larger than that between plant rows (BR) under FI, and the cumulative CO2 emission on the irrigation pipes (OP) was larger than that between irrigation pipes (BP) under DI. The cumulative CO2 emissions of OP, BP and bare area (BA) under DI were larger than those of OR, BR and BA under FI, respectively. Additionally, DI promoted root respiration more effectively than FI did. The average proportion of root respiration contributing to the soil CO2 emissions of OP under DI was larger than that of OR under FI. A general conclusion drawn from this study is that soil CO2 emission was significantly influenced by the soil water content, soil temperature and air temperature under both DI and FI. Larger concentrations of dissolved organic carbon (DOC), microbial biomass carbon (MBC) and total organic carbon (TOC) were observed under FI than those under DI. The observed high concentrations (DOC, MBC, and TOC) under FI might be resulted from the irrigation-associated soil saturation that in turn inhibited microbial activity and lowered decomposition rate of soil organic matter. However, DI increased the soil organic matter quality (the ratio of MBC to TOC) at the depth of 10-20 cm compared with FI. Our results suggest that the transformation from conventional FI to integrated DI can increase the CO2 emissions and DI needs to be combined with other management practices to reduce the CO2 emissions from summer maize fields in the North China Plain.展开更多
Grassland is the largest terrestrial ecosystem in China. It is of great significance to measure accurately the soil respiration of different grassland types for the contribution evaluation of the Chinese terrestrial e...Grassland is the largest terrestrial ecosystem in China. It is of great significance to measure accurately the soil respiration of different grassland types for the contribution evaluation of the Chinese terrestrial ecosystem’s carbon emission to the atmospheric CO2 concentration. A three-year (2005-2007) field experiment was carried out on three steppes of Stipa L. in the Xilin River Basin, Inner Mongolia, China, using a static opaque chamber technique. The seasonal and interannual variations of soil respiration rates were analyzed, and the annual total soil respiration of the three steppes was estimated. The numerical models between soil respiration and water-heat factors were established respectively. Similar seasonal dynamic and high annual and interannual variations of soil respiration were found in all of the three steppes. In the growing season, the fluctuation of soil respiration was particularly evident. The coefficients of variation (CVs) for soil respiration in different growing seasons ranged from 54% to 93%, and the annual CVs were all above 115%. The interannual CV of soil respiration progressively decreased in the order of Stipa grandis (S. grandis) steppe 】 Stipa baicalensis (S. baicalensis) steppe 】 Stipa krylovii (S. krylovii) steppe. The annual total soil respiration for the S. baicalensis steppe was 223.62?299.24 gC m-2 a-1, 150.62-226.99 gC m-2 a-1 for the S. grandis steppe, and 111.31–131.55 gC m-2 a-1 for the S. krylovii steppe, which were consistent with the precipitation gradient. The variation in the best fitting temperature factor explained the 63.5%, 73.0%, and 73.2% change in soil respiration in the three steppes at an annual time scale, and the corresponding Q10 values were 2.16, 2.98, and 2.40, respectively. Moreover, the Q10 values that were calculated by soil temperature at different depths all expressed a 10 cm 】 5 cm 】 surface in the three sampling sites. In the growing season, the soil respiration rates were related mostly to the surface soil moisture, and the 95.2%, 97.4%, and 93.2% variations in soil respiration in the three steppes were explained by the change in soil moisture at a depth of 0-10 cm, respectively.展开更多
Cultivation is one of the most important human activities affecting the grassland ecosystem besides grazing, but its impacts on soil total organic carbon (C), especially on the liable organic C fractions have not be...Cultivation is one of the most important human activities affecting the grassland ecosystem besides grazing, but its impacts on soil total organic carbon (C), especially on the liable organic C fractions have not been fully understood yet. In this paper, the role of cropping in soil organic C pool of different fractions was investigated in a meadow steppe region in Inner Mongolia of China, and the relationships between different C fractions were also discussed. The results indicated that the concentrations of different C fractions at steppe and cultivated land all decreased progressively with soil depth. After the conversion from steppe to spring wheat field for 36 years, total organic carbon (TOC) concentration at the 0 to 100 cm soil depth has decreased by 12.3% to 28.2%, and TOC of the surface soil horizon, especially those of 0-30 cm decreased more significantly (p〈0.01). The dissolved organic carbon (DOC) and microbial biomass carbon (MBC) at the depth of 0-40 cm were found to have decreased by 66.7% to 77.1% and 36.5% to 42.4%, respectively. In the S.baicalensis steppe, the ratios of soil DOC to TOC varied between 0.52% and 0.60%, and those in the spring wheat field were only in the range of 0.18%-0.20%. The microbial quotients (qMBs) in the spring wheat field, varying from 1.11% to 1.40%, were also lower than those in the S. baicalensis steppe, which were in the range of 1.50%-1.63%. The change of DOC was much more sensitive to cultivation disturbance. Soil TOC, DOC, and MBC were significantly positive correlated with each other in the S. baicalensis steppe, but in the spring wheat field, the correlativity between DOC and TOC and that between DOC and MBC did not reach the significance level of 0.05.展开更多
Fixed field experimental studies are carried out on daily variations of the undis-turbed community and soil respiration fluxes in different phenological phases of 2001―2002 in semiarid Aneurolepidium chinense steppe ...Fixed field experimental studies are carried out on daily variations of the undis-turbed community and soil respiration fluxes in different phenological phases of 2001―2002 in semiarid Aneurolepidium chinense steppe of Inner Mongolia,China using static black chamber method.Corresponding statistical analysis of the contributions of the water-heat factors(air temperature,ground temperature,surface soil water content)and ecological factors(above-ground biomass,underground biomass,litter biomass)to daily variation law of the undisturbed community and soil respiration fluxes as well as differences in daily respiration are also con-ducted.The results indicate that undisturbed community and soil respiration have apparent daily variation laws,daily variation patterns of respiration fluxes during different phenological phases are basically the same,and the variations of environmental factors only exert effect on CO_(2)emission intensities,while the effect on daily variation pattern of grassland CO_(2)emission fluxes is relatively small.The daily total respiration of the undisturbed community in different phenological phases ranges from 1.34―10.13 g·m^(-2);soil daily total respiration ranges from 0.98―5.17 g·m^(-2);both daily variations of undisturbed community and soil respiration fluxes are significantly corre-lated(p<0.05)or extremely significantly correlated(p<0.01)with air temperatures and ground surface temperatures,but the correlativity with the soil temperature at 5 and 10 cm depths is relatively weak;multiple regression analysis indicates that about 80%of the difference in daily respiration of the undisturbed community among different phenological phases is induced by the variation of the aboveground biomass,while the variations of the remaining factors can jointly explain around 20%of the daily respiration variations of the whole grassland ecosystem;about 83%of the soil daily respiration variation of the different phenological phases is caused by 0―20 cm underground biomass.Besides,surface soil water content is also an important environmental factor affecting soil daily respiration variations of the Aneurolepidium chinense steppe,but its partial correlation coefficient with soil daily respiration amount does not reach the significance level of 0.05.展开更多
基金supported by the Special Fund for Agro-scientific Research in the Public Interest(201203012)the National Natural Science Foundation of China(41373084,41330528,41203054)
文摘The need is pressing to investigate soil CO2 (carbon dioxide) emissions and soil organic carbon dynamics under water-saving irrigation practices in agricultural systems for exploring the potentials of soil carbon sequestration. A field experiment was conducted to compare the influences of drip irrigation (DI) and flood irrigation (FI) on soil organic carbon dynamics and the spatial and temporal variations in CO2 emissions during the summer maize growing season in the North China Plain using the static closed chamber method. The mean CO2 efflux over the growing season was larger under DI than that under FI. The cumulative CO2 emissions at the field scale were 1959.10 and 1759.12 g/m2 under DI and FI, respectively. The cumulative CO2 emission on plant rows (OR) was larger than that between plant rows (BR) under FI, and the cumulative CO2 emission on the irrigation pipes (OP) was larger than that between irrigation pipes (BP) under DI. The cumulative CO2 emissions of OP, BP and bare area (BA) under DI were larger than those of OR, BR and BA under FI, respectively. Additionally, DI promoted root respiration more effectively than FI did. The average proportion of root respiration contributing to the soil CO2 emissions of OP under DI was larger than that of OR under FI. A general conclusion drawn from this study is that soil CO2 emission was significantly influenced by the soil water content, soil temperature and air temperature under both DI and FI. Larger concentrations of dissolved organic carbon (DOC), microbial biomass carbon (MBC) and total organic carbon (TOC) were observed under FI than those under DI. The observed high concentrations (DOC, MBC, and TOC) under FI might be resulted from the irrigation-associated soil saturation that in turn inhibited microbial activity and lowered decomposition rate of soil organic matter. However, DI increased the soil organic matter quality (the ratio of MBC to TOC) at the depth of 10-20 cm compared with FI. Our results suggest that the transformation from conventional FI to integrated DI can increase the CO2 emissions and DI needs to be combined with other management practices to reduce the CO2 emissions from summer maize fields in the North China Plain.
基金supported by National Natural Science Foundation of China (Grant Nos. 40730105, 40673067, and 40973057)National Key Technology Research and Development Program (Grant No. 2007BAC03A11)
文摘Grassland is the largest terrestrial ecosystem in China. It is of great significance to measure accurately the soil respiration of different grassland types for the contribution evaluation of the Chinese terrestrial ecosystem’s carbon emission to the atmospheric CO2 concentration. A three-year (2005-2007) field experiment was carried out on three steppes of Stipa L. in the Xilin River Basin, Inner Mongolia, China, using a static opaque chamber technique. The seasonal and interannual variations of soil respiration rates were analyzed, and the annual total soil respiration of the three steppes was estimated. The numerical models between soil respiration and water-heat factors were established respectively. Similar seasonal dynamic and high annual and interannual variations of soil respiration were found in all of the three steppes. In the growing season, the fluctuation of soil respiration was particularly evident. The coefficients of variation (CVs) for soil respiration in different growing seasons ranged from 54% to 93%, and the annual CVs were all above 115%. The interannual CV of soil respiration progressively decreased in the order of Stipa grandis (S. grandis) steppe 】 Stipa baicalensis (S. baicalensis) steppe 】 Stipa krylovii (S. krylovii) steppe. The annual total soil respiration for the S. baicalensis steppe was 223.62?299.24 gC m-2 a-1, 150.62-226.99 gC m-2 a-1 for the S. grandis steppe, and 111.31–131.55 gC m-2 a-1 for the S. krylovii steppe, which were consistent with the precipitation gradient. The variation in the best fitting temperature factor explained the 63.5%, 73.0%, and 73.2% change in soil respiration in the three steppes at an annual time scale, and the corresponding Q10 values were 2.16, 2.98, and 2.40, respectively. Moreover, the Q10 values that were calculated by soil temperature at different depths all expressed a 10 cm 】 5 cm 】 surface in the three sampling sites. In the growing season, the soil respiration rates were related mostly to the surface soil moisture, and the 95.2%, 97.4%, and 93.2% variations in soil respiration in the three steppes were explained by the change in soil moisture at a depth of 0-10 cm, respectively.
基金National Natural Science foundation of China, No.40730105 No.40973057+1 种基金 No.41073061 Knowledge In novation Program of the Chinese Academy of Sciences, No.KZCX2-EW-302
文摘Cultivation is one of the most important human activities affecting the grassland ecosystem besides grazing, but its impacts on soil total organic carbon (C), especially on the liable organic C fractions have not been fully understood yet. In this paper, the role of cropping in soil organic C pool of different fractions was investigated in a meadow steppe region in Inner Mongolia of China, and the relationships between different C fractions were also discussed. The results indicated that the concentrations of different C fractions at steppe and cultivated land all decreased progressively with soil depth. After the conversion from steppe to spring wheat field for 36 years, total organic carbon (TOC) concentration at the 0 to 100 cm soil depth has decreased by 12.3% to 28.2%, and TOC of the surface soil horizon, especially those of 0-30 cm decreased more significantly (p〈0.01). The dissolved organic carbon (DOC) and microbial biomass carbon (MBC) at the depth of 0-40 cm were found to have decreased by 66.7% to 77.1% and 36.5% to 42.4%, respectively. In the S.baicalensis steppe, the ratios of soil DOC to TOC varied between 0.52% and 0.60%, and those in the spring wheat field were only in the range of 0.18%-0.20%. The microbial quotients (qMBs) in the spring wheat field, varying from 1.11% to 1.40%, were also lower than those in the S. baicalensis steppe, which were in the range of 1.50%-1.63%. The change of DOC was much more sensitive to cultivation disturbance. Soil TOC, DOC, and MBC were significantly positive correlated with each other in the S. baicalensis steppe, but in the spring wheat field, the correlativity between DOC and TOC and that between DOC and MBC did not reach the significance level of 0.05.
基金the Statc Key Basic Research Development and Planning Project(Grant No.2002CB412503)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX1-sw-01-04)the Knowl-edge Innovation Project of the Institute of Geographic Sciences and Natural Resources Research,CAS(Grant No.CXIOG-E01-03-01).
文摘Fixed field experimental studies are carried out on daily variations of the undis-turbed community and soil respiration fluxes in different phenological phases of 2001―2002 in semiarid Aneurolepidium chinense steppe of Inner Mongolia,China using static black chamber method.Corresponding statistical analysis of the contributions of the water-heat factors(air temperature,ground temperature,surface soil water content)and ecological factors(above-ground biomass,underground biomass,litter biomass)to daily variation law of the undisturbed community and soil respiration fluxes as well as differences in daily respiration are also con-ducted.The results indicate that undisturbed community and soil respiration have apparent daily variation laws,daily variation patterns of respiration fluxes during different phenological phases are basically the same,and the variations of environmental factors only exert effect on CO_(2)emission intensities,while the effect on daily variation pattern of grassland CO_(2)emission fluxes is relatively small.The daily total respiration of the undisturbed community in different phenological phases ranges from 1.34―10.13 g·m^(-2);soil daily total respiration ranges from 0.98―5.17 g·m^(-2);both daily variations of undisturbed community and soil respiration fluxes are significantly corre-lated(p<0.05)or extremely significantly correlated(p<0.01)with air temperatures and ground surface temperatures,but the correlativity with the soil temperature at 5 and 10 cm depths is relatively weak;multiple regression analysis indicates that about 80%of the difference in daily respiration of the undisturbed community among different phenological phases is induced by the variation of the aboveground biomass,while the variations of the remaining factors can jointly explain around 20%of the daily respiration variations of the whole grassland ecosystem;about 83%of the soil daily respiration variation of the different phenological phases is caused by 0―20 cm underground biomass.Besides,surface soil water content is also an important environmental factor affecting soil daily respiration variations of the Aneurolepidium chinense steppe,but its partial correlation coefficient with soil daily respiration amount does not reach the significance level of 0.05.