Hydrothermal processes are key components in permafrost dynamics; these processes are integral to global wanning. In this study the coupled heat and mass transfer model for (CoupModel) the soil-plant-atmosphere-syst...Hydrothermal processes are key components in permafrost dynamics; these processes are integral to global wanning. In this study the coupled heat and mass transfer model for (CoupModel) the soil-plant-atmosphere-system is applied in high-altitude permafrost regions and to model hydrothermal transfer processes in freeze-thaw cycles. Measured meteorological forcing and soil and vegetation properties are used in the CoupModel for the period from January 1, 2009 to December 31, 2012 at the Tanggula observation site in the Qinghai-Tibet Plateau. A 24-h time step is used in the model simulation. The results show that the simulated soil temperature and water content, as well as the frozen depth compare well with the measured data. The coefficient of determination (R2) is 0.97 for the mean soil temperature and 0.73 for the mean soil water content, respectively. The simulated soil heat flux at a depth of 0-20 cm is also consistent with the monitored data. An analysis is performed on the simulated hydrothermal transfer processes from the deep soil layer to the upper one during the freezing and thawing period. At the beginning of the freezing period, the water in the deep soil layer moves upward to the freezing front and releases heat during the freezing process. When the soil layer is completely frozen, there are no vertical water ex- changes between the soil layers, and the heat exchange process is controlled by the vertical soil temperature gradient. During the thaw- ing period, the downward heat process becomes more active due to increased incoming shortwave radiation at the ground surface. The melt water is quickly dissolved in the soil, and the soil water movement only changes in the shallow soil layer. Subsequently, the model was used to provide an evaluation of the potential response of the active layer to different scenarios of initial water content and climate warming at the Tanggula site. The results reveal that the soil water content and the organic layer provide protection against active layer deepening in summer, so climate warming will cause the permafrost active layer to become deeoer and permafrost degradation.展开更多
Soil temperature is a key variable in the control of underground hydro-thermal processes. To estimate soil temperature more accurately, this study proposed a solution method of the heat conduction equation of soil tem...Soil temperature is a key variable in the control of underground hydro-thermal processes. To estimate soil temperature more accurately, this study proposed a solution method of the heat conduction equation of soil temperature (improved heat conduction model) by applying boundary conditions that incorporate the annual and diurnal variations of soil surface temperature and the temporal variation of daily temperature amplitude, as well as the temperature difference between two soil layers in the Tanggula observation site of the Qinghai-Tibet Plateau of China. We employed both the improved heat conduction model and the classical heat conduction model to fit soil temperature by using the 5 cm soil layer as the upper boundary for soil depth. The results indicated that the daily soil temperature amplitude can be better described by the sinusoidal function in the improved model, which then yielded more accurate soil temperature simulating effect at the depth of 5 cm. The simulated soil temperature values generated by the improved model and classical heat conduction model were then compared to the observed soil temperature values at different soil depths. Statistical analyses of the root mean square error (RMSE), the normalized standard error (NSEE) and the bias demonstrated that the improved model showed higher accuracy, and the average values of RMSE, bias and NSEE at the soil depth of 10-105 cm were 1.41℃, 1.15℃ and 22.40%, respectively. These results indicated that the improved heat conduction model can better estimate soil temperature profiles compared to the traditional model.展开更多
The semiconductor-superconductor con tact system of Ge/Y-Ba-Cu-O(YBCO)/SrTiO_(3) has been successfully fabricated by two steps of deposition.The YBCO film in the contact of Ge/YBCO did not lose its superconductivity a...The semiconductor-superconductor con tact system of Ge/Y-Ba-Cu-O(YBCO)/SrTiO_(3) has been successfully fabricated by two steps of deposition.The YBCO film in the contact of Ge/YBCO did not lose its superconductivity and its T_(c)(on set)did not degrade as well.The top layer of Ge was polycrystalline with preferred orientation corresponding to the epitaxial structure of the underlayer of YBCO.展开更多
Using monitored active layer thickness(ALT) and environmental variables of 10 observation fields along the Qinghai-Tibet Highway in permafrost region of the Qinghai-Tibetan Plateau(QTP),a model for ALT estimation was ...Using monitored active layer thickness(ALT) and environmental variables of 10 observation fields along the Qinghai-Tibet Highway in permafrost region of the Qinghai-Tibetan Plateau(QTP),a model for ALT estimation was developed.The temporal and spatial characteristics of the ALT were also analyzed.The results showed that in the past 30 years ALT in the study region increased at a rate of 1.33 cm a-1.Temperatures at the upper limit of permafrost and at 50 cm depth,along with soil cumulative temperature at 5 cm depth also exhibited a rising trend.Soil heat flux increased at a rate of 0.1 Wm-2 a-1.All the above changes demonstrated that the degradation of permafrost happened in the study region on the QTP.The initial thawing date of active layer was advanced,while the initial freezing date was delayed.The number of thawing days increased to a rate of 1.18 da-1.The variations of active layer were closely related to the permafrost type,altitude,underlying surface type and soil composition.The variations were more evident in cold permafrost region than in warm permafrost region,in high-altitude region than in low-altitude region,in alpine meadow region than in alpine steppe region;and in fine-grained soil region than in coarse-grained soil region.展开更多
Water and heat dynamics in the active layer at a monitoring site in the Tanggula Mountains, located in the permafrost region of the Qinghai-Xizang (Tibet) Plateau (QXP), were studied using the physical-process-bas...Water and heat dynamics in the active layer at a monitoring site in the Tanggula Mountains, located in the permafrost region of the Qinghai-Xizang (Tibet) Plateau (QXP), were studied using the physical-process-based COUPMODEL model, including the interaction between soil temperature and moisture under freeze-thaw cycles. Meteorological, ground temperature and moisture data from different depths within the active layer were used to calibrate and validate the model. The results indicate that the calibrated model satisfactorily simulates the soil temperatures from the top to the bottom of the soil layers as well as the moisture content of the active layer in permafrost regions. The simulated soil heat flux at depths of 0 to 20 cm was consistent with the monitoring data, and the simulations of the radiation balance components were reasonable. Energy consumed for phase change was estimated from the simulated ice content during the freeze/thaw processes from 2007 to 2008. Using this model, the active layer thickness and the energy consumed for phase change were predicted for future climate warming scenarioS. The model predicts an increase of the active layer thickness from the current 330 cm to approximately 350-390 cm as a result of a 1-2℃ warming. However, the effect active layer thickness of more precipitation is limited when the precipitation is increased by 20%-50%. The COUPMODEL provides a useful tool for predicting and understanding the fate of permafrost in the QXP under a warming climate.展开更多
基金National Major Scientific Project of China(No.2013CBA01803)Science Fund for Creative Research Groups of National Natural Science Foundation of China(No.41121001)+1 种基金National Natural Science Foundation of China(No.41271081)Foundation of One Hundred Person Project of Chinese Academy of Sciences(No.51Y251571)
文摘Hydrothermal processes are key components in permafrost dynamics; these processes are integral to global wanning. In this study the coupled heat and mass transfer model for (CoupModel) the soil-plant-atmosphere-system is applied in high-altitude permafrost regions and to model hydrothermal transfer processes in freeze-thaw cycles. Measured meteorological forcing and soil and vegetation properties are used in the CoupModel for the period from January 1, 2009 to December 31, 2012 at the Tanggula observation site in the Qinghai-Tibet Plateau. A 24-h time step is used in the model simulation. The results show that the simulated soil temperature and water content, as well as the frozen depth compare well with the measured data. The coefficient of determination (R2) is 0.97 for the mean soil temperature and 0.73 for the mean soil water content, respectively. The simulated soil heat flux at a depth of 0-20 cm is also consistent with the monitored data. An analysis is performed on the simulated hydrothermal transfer processes from the deep soil layer to the upper one during the freezing and thawing period. At the beginning of the freezing period, the water in the deep soil layer moves upward to the freezing front and releases heat during the freezing process. When the soil layer is completely frozen, there are no vertical water ex- changes between the soil layers, and the heat exchange process is controlled by the vertical soil temperature gradient. During the thaw- ing period, the downward heat process becomes more active due to increased incoming shortwave radiation at the ground surface. The melt water is quickly dissolved in the soil, and the soil water movement only changes in the shallow soil layer. Subsequently, the model was used to provide an evaluation of the potential response of the active layer to different scenarios of initial water content and climate warming at the Tanggula site. The results reveal that the soil water content and the organic layer provide protection against active layer deepening in summer, so climate warming will cause the permafrost active layer to become deeoer and permafrost degradation.
基金financially supported by the National Basic Research Program of China(2013CBA01803)the key project of the Chinese Academy of Sciences(KJZD-EW-G03-02)+4 种基金the National Natural Science Foundation of China(4127108141271086)the One Hundred Talent Program of the Chinese Academy of Sciences(51Y551831)the Natural Science Foundation of Gansu Province(1308RJZA309)the support of the West Light Foundation of the Chinese Academy of Sciences
文摘Soil temperature is a key variable in the control of underground hydro-thermal processes. To estimate soil temperature more accurately, this study proposed a solution method of the heat conduction equation of soil temperature (improved heat conduction model) by applying boundary conditions that incorporate the annual and diurnal variations of soil surface temperature and the temporal variation of daily temperature amplitude, as well as the temperature difference between two soil layers in the Tanggula observation site of the Qinghai-Tibet Plateau of China. We employed both the improved heat conduction model and the classical heat conduction model to fit soil temperature by using the 5 cm soil layer as the upper boundary for soil depth. The results indicated that the daily soil temperature amplitude can be better described by the sinusoidal function in the improved model, which then yielded more accurate soil temperature simulating effect at the depth of 5 cm. The simulated soil temperature values generated by the improved model and classical heat conduction model were then compared to the observed soil temperature values at different soil depths. Statistical analyses of the root mean square error (RMSE), the normalized standard error (NSEE) and the bias demonstrated that the improved model showed higher accuracy, and the average values of RMSE, bias and NSEE at the soil depth of 10-105 cm were 1.41℃, 1.15℃ and 22.40%, respectively. These results indicated that the improved heat conduction model can better estimate soil temperature profiles compared to the traditional model.
基金Supported by the National Center for Research&Development on SuperconductivityBeijing Zhongguancun Associated Center of Analysis and Measurement.
文摘The semiconductor-superconductor con tact system of Ge/Y-Ba-Cu-O(YBCO)/SrTiO_(3) has been successfully fabricated by two steps of deposition.The YBCO film in the contact of Ge/YBCO did not lose its superconductivity and its T_(c)(on set)did not degrade as well.The top layer of Ge was polycrystalline with preferred orientation corresponding to the epitaxial structure of the underlayer of YBCO.
基金supported by the National Natural Science Foundation of China(40871037,40830533 and 40901042)the Hundred Talents Program of the Chinese Academy of Sciences(51Y251571)+4 种基金the National Basic Research Program of China(2007CB411504 and 2007CB411505)Infrastructure Projects from Chinese Ministry Science and Technology(2008FY110200)the State Key Laboratory of Cryospheric Science(SKLCS-ZZ-2010-03)Background of ecological monitoring for the ecological environment protection and construction in Three-Rivers Source Nature Resource Protection Areas-Permafrost monitoring and assessment projectthe Cryosphere Research Station on the Qinghai-Xizang Plateau,Chinese Academic Sciences
文摘Using monitored active layer thickness(ALT) and environmental variables of 10 observation fields along the Qinghai-Tibet Highway in permafrost region of the Qinghai-Tibetan Plateau(QTP),a model for ALT estimation was developed.The temporal and spatial characteristics of the ALT were also analyzed.The results showed that in the past 30 years ALT in the study region increased at a rate of 1.33 cm a-1.Temperatures at the upper limit of permafrost and at 50 cm depth,along with soil cumulative temperature at 5 cm depth also exhibited a rising trend.Soil heat flux increased at a rate of 0.1 Wm-2 a-1.All the above changes demonstrated that the degradation of permafrost happened in the study region on the QTP.The initial thawing date of active layer was advanced,while the initial freezing date was delayed.The number of thawing days increased to a rate of 1.18 da-1.The variations of active layer were closely related to the permafrost type,altitude,underlying surface type and soil composition.The variations were more evident in cold permafrost region than in warm permafrost region,in high-altitude region than in low-altitude region,in alpine meadow region than in alpine steppe region;and in fine-grained soil region than in coarse-grained soil region.
基金financially supported by the National Major Scientific Project of China(Grant No.2013CBA01803)the National Natural Science Foundation of China(Grant Nos.41271081+1 种基金41271086)the Foundation of One Hundred Person Project of the Chinese Academy of Sciences(Grant No.51Y551831)
文摘Water and heat dynamics in the active layer at a monitoring site in the Tanggula Mountains, located in the permafrost region of the Qinghai-Xizang (Tibet) Plateau (QXP), were studied using the physical-process-based COUPMODEL model, including the interaction between soil temperature and moisture under freeze-thaw cycles. Meteorological, ground temperature and moisture data from different depths within the active layer were used to calibrate and validate the model. The results indicate that the calibrated model satisfactorily simulates the soil temperatures from the top to the bottom of the soil layers as well as the moisture content of the active layer in permafrost regions. The simulated soil heat flux at depths of 0 to 20 cm was consistent with the monitoring data, and the simulations of the radiation balance components were reasonable. Energy consumed for phase change was estimated from the simulated ice content during the freeze/thaw processes from 2007 to 2008. Using this model, the active layer thickness and the energy consumed for phase change were predicted for future climate warming scenarioS. The model predicts an increase of the active layer thickness from the current 330 cm to approximately 350-390 cm as a result of a 1-2℃ warming. However, the effect active layer thickness of more precipitation is limited when the precipitation is increased by 20%-50%. The COUPMODEL provides a useful tool for predicting and understanding the fate of permafrost in the QXP under a warming climate.