Passive target detection through shipping-radiated noise is a key technology in current underwater operations and is of great research value in civil and military fields.In this study,the stable spectral line componen...Passive target detection through shipping-radiated noise is a key technology in current underwater operations and is of great research value in civil and military fields.In this study,the stable spectral line component of shipping-radiated noise is used as the research object,and the classification of multisource targets is studied from the perspective of underwater channels.We utilize the channel impulse response function as the classification basis of different targets.First,the underwater channel is estimated by the cepstrum.Then,the channel cepstral features carried by different spectral line components are extracted in turn.Finally,the spectral line components belonging to the same target are clustered by the cepstral feature distance to realize the classification of different targets.The simulation and experimental results verify the effectiveness of the proposed method in this research.展开更多
The time arrival structure of acoustic pulse signals propagating in ocean waveguides is of great significance for underwater acoustic communication and navigation. Using the deep-sea sound propagation data from the ex...The time arrival structure of acoustic pulse signals propagating in ocean waveguides is of great significance for underwater acoustic communication and navigation. Using the deep-sea sound propagation data from the experiments respectively conducted in the East Indian Ocean(EIO) and the South China Sea(SCS) with explosion sources near the sound channel axis(SCA), long-range transmission loss(TL) and time arrival structure of acoustic pulses for different sound speed profiles(SSPs) are compared. In the EIO environment, sound energy transmitting along the SCA is relatively large, and the corresponding signals arrive first, whereas signals propagating away from the SCA arrive late. In the full receiving depth, it shows a branch structure where the waveform near the SCA arrives earlier than other depths, which is totally different with the characteristics of the sound pulse in the SCS. Combined with the parametric mathematical model of deep-sea sound channel, the influence mechanism of SSP on the time arrival structure of long-range pulse propagation is theoretically analyzed, which well explains the phenomenon observed in the two experiments.展开更多
In this paper,a stepwise coupled-mode model with the use of the direct global matrix approach is proposed.This method is capable of handling two-dimensional problems with either a point source in cylindrical geometry ...In this paper,a stepwise coupled-mode model with the use of the direct global matrix approach is proposed.This method is capable of handling two-dimensional problems with either a point source in cylindrical geometry or a line source in plane geometry.With the use of the direct global matrix approach,this method is numerically stable.In addition,by introducing appropriately normalized range solutions,this model is free from the numerical overflow problem.Furthermore,we put forward source conditions appropriate for the line-source problem in plane geometry.As a result,this method is capable of addressing the scenario with a line source on top of a sloping bottom.Closed-form expressions for coupling matrices are derived and applied in this paper for handling problems with pressure-release boundaries and a homogeneous water column.The numerical simulations indicate that the proposed model is accurate,efficient,and numerically stable.Consequently,this model can serve as a benchmark model in range-dependent propagation modeling.Although this method is verified by an ideal wedge problem in this paper,the formulation applies to realistic problems as well.展开更多
Motivated by a phenomenon in an experiment conducted in the Northwestern Pacific indicating that the energy of the received signal around the sound channel axis is much greater than that at shallower depths,we study s...Motivated by a phenomenon in an experiment conducted in the Northwestern Pacific indicating that the energy of the received signal around the sound channel axis is much greater than that at shallower depths,we study sound propagation from the transitional area(shelfbreak)to deep water.Numerical simulations with different source depths are first performed,from which we reach the following conclusions.When the source is located near the sea surface,sound will be strongly attenuated by bottom losses in a range-independent oceanic environment,whereas it can propagate to a very long range because of the continental slope.When the source is mounted on the bottom in shallow water,acoustic energy will be trapped near the sound channel axis,and it converges more evidently than the case where the source is located near the sea surface.Then,numerical simulations with different source ranges are performed.By comparing the relative energy level in the vertical direction between the numerical simulations and the experimental data,the range of the air-gun source can be approximated.展开更多
Two coupled-mode methods, namely DGMCM (Direct-Global-Matrix Coupled- Mode Method) and CCMM (Consistent Coupled-Mode Method), are analyzed and compared. First, both of these two methods provide two-way solutions, ...Two coupled-mode methods, namely DGMCM (Direct-Global-Matrix Coupled- Mode Method) and CCMM (Consistent Coupled-Mode Method), are analyzed and compared. First, both of these two methods provide two-way solutions, and hence they are accurate models. Second, the series of local vertical modes in DGMCM converges as fast as that in CCMM, whereas DGMCM has a more tolerable requirement of the number of segments than CCMM. Third, these two models obtain the field solution by solving the coupled-mode system with different coefficient matrices, in which the computational effort for the required parameters is almost the same. Finally, DGMCM can handle some problems which are difficult for CCMM, such as in a waveguide with a rough bottom, a line source located right on top of a sloping bot- tom, or in the presence of multiple sources. In DGMCM, closed-form expressions for coupling matrices in a two-layer waveguide are given. In addition, the formulation for the line-source problem in plane geometry is derived to update CCMM.展开更多
The multiple-path sound propagation in deep water is conducive to source localization of an underwater target.The transmission losses(TLs) and broadband pulse multiple-path propagation characteristics from a deep rece...The multiple-path sound propagation in deep water is conducive to source localization of an underwater target.The transmission losses(TLs) and broadband pulse multiple-path propagation characteristics from a deep receiver is analyzed by using the experimental data from deep water area in the South China Sea(SCS).The results indicate that the width of the direct zone near the bottom of 4300 m water depth is about 30 km.The TLs in the direct zone near the bottom are much less than those in the shadow zone.It is meaningful for underwater sound source detection.Moreover,the time delay between the direct path and the bottomsurface-reflected path for a receiver near the bottom decreases monotonically with the source range.According to the linear relationship between the time delay of multipath and source range,a source localization method is presented to estimate the range of underwater target.The experimental results show that the estimated ranges are consistent with the global position system(GPS) measurements,and the mean square error of the estimation results is less than 0.28 km.展开更多
Bottom acoustic parameters are vital for studying sound propagation properties and their applications in ocean waveguides.The propagation properties and normal-mode structure of vertical-particle-velocity in an ocean ...Bottom acoustic parameters are vital for studying sound propagation properties and their applications in ocean waveguides.The propagation properties and normal-mode structure of vertical-particle-velocity in an ocean environment with a thermocline in shallow water were studied in the Yellow Sea.The Results reveal that high energy of the verticalparticle-velocity exists at most depth except for near-bottom depth when the source and receiver are both below the thermocline.Moreover,high-order modes contribute more to the verticalparticle-velocity and vertical-particle-velocity-based matched-field-processing(MFP)inversion method can be highly sensitive to bottom parameters compared to sound pressure.Furthermore,the effects of the bottom absorption coefficient on the vertical-particle-velocity-based MFP inversion method are studied.It is shown that accurate sound velocity,density and water depth can be obtained only when the bottom absorption coefficient is set close to the real value during MFP.By using the vertical-particle-velocity signals recorded by vector hydrophones during the experiment and determining the bottom sound velocity,bottom density and water depth under different bottom absorption coefficients,stable inversion results were obtained.The transmission losses of the sound pressure at different ranges were used to invert the bottom absorption coefficients.The transmission losses of sound pressure calculated using the inverted bottom parameters are consistent with the experimental results obtained from the pressure hydrophones in the experiment.展开更多
基金This study was supported by the National Natural Sci-ence Foundation of China(No.11774073)the State Key Laboratory of Acoustics(No.SKLA201904).
文摘Passive target detection through shipping-radiated noise is a key technology in current underwater operations and is of great research value in civil and military fields.In this study,the stable spectral line component of shipping-radiated noise is used as the research object,and the classification of multisource targets is studied from the perspective of underwater channels.We utilize the channel impulse response function as the classification basis of different targets.First,the underwater channel is estimated by the cepstrum.Then,the channel cepstral features carried by different spectral line components are extracted in turn.Finally,the spectral line components belonging to the same target are clustered by the cepstral feature distance to realize the classification of different targets.The simulation and experimental results verify the effectiveness of the proposed method in this research.
基金supported by the National Natural Science Foundation of China (11874061,U22A2012)the Youth Innovation Promotion Association of Chinese Academy of Sciences (2021023)。
文摘The time arrival structure of acoustic pulse signals propagating in ocean waveguides is of great significance for underwater acoustic communication and navigation. Using the deep-sea sound propagation data from the experiments respectively conducted in the East Indian Ocean(EIO) and the South China Sea(SCS) with explosion sources near the sound channel axis(SCA), long-range transmission loss(TL) and time arrival structure of acoustic pulses for different sound speed profiles(SSPs) are compared. In the EIO environment, sound energy transmitting along the SCA is relatively large, and the corresponding signals arrive first, whereas signals propagating away from the SCA arrive late. In the full receiving depth, it shows a branch structure where the waveform near the SCA arrives earlier than other depths, which is totally different with the characteristics of the sound pulse in the SCS. Combined with the parametric mathematical model of deep-sea sound channel, the influence mechanism of SSP on the time arrival structure of long-range pulse propagation is theoretically analyzed, which well explains the phenomenon observed in the two experiments.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10734100 and 11125420)the Knowledge Innovation Program of Chinese Academy of Sciences
文摘In this paper,a stepwise coupled-mode model with the use of the direct global matrix approach is proposed.This method is capable of handling two-dimensional problems with either a point source in cylindrical geometry or a line source in plane geometry.With the use of the direct global matrix approach,this method is numerically stable.In addition,by introducing appropriately normalized range solutions,this model is free from the numerical overflow problem.Furthermore,we put forward source conditions appropriate for the line-source problem in plane geometry.As a result,this method is capable of addressing the scenario with a line source on top of a sloping bottom.Closed-form expressions for coupling matrices are derived and applied in this paper for handling problems with pressure-release boundaries and a homogeneous water column.The numerical simulations indicate that the proposed model is accurate,efficient,and numerically stable.Consequently,this model can serve as a benchmark model in range-dependent propagation modeling.Although this method is verified by an ideal wedge problem in this paper,the formulation applies to realistic problems as well.
基金supported by the National Natural Science Foundation of China(Grant No.11125420)
文摘Motivated by a phenomenon in an experiment conducted in the Northwestern Pacific indicating that the energy of the received signal around the sound channel axis is much greater than that at shallower depths,we study sound propagation from the transitional area(shelfbreak)to deep water.Numerical simulations with different source depths are first performed,from which we reach the following conclusions.When the source is located near the sea surface,sound will be strongly attenuated by bottom losses in a range-independent oceanic environment,whereas it can propagate to a very long range because of the continental slope.When the source is mounted on the bottom in shallow water,acoustic energy will be trapped near the sound channel axis,and it converges more evidently than the case where the source is located near the sea surface.Then,numerical simulations with different source ranges are performed.By comparing the relative energy level in the vertical direction between the numerical simulations and the experimental data,the range of the air-gun source can be approximated.
基金supported by the National Natural Sciencc Foundation of China(11125420,11104312)
文摘Two coupled-mode methods, namely DGMCM (Direct-Global-Matrix Coupled- Mode Method) and CCMM (Consistent Coupled-Mode Method), are analyzed and compared. First, both of these two methods provide two-way solutions, and hence they are accurate models. Second, the series of local vertical modes in DGMCM converges as fast as that in CCMM, whereas DGMCM has a more tolerable requirement of the number of segments than CCMM. Third, these two models obtain the field solution by solving the coupled-mode system with different coefficient matrices, in which the computational effort for the required parameters is almost the same. Finally, DGMCM can handle some problems which are difficult for CCMM, such as in a waveguide with a rough bottom, a line source located right on top of a sloping bot- tom, or in the presence of multiple sources. In DGMCM, closed-form expressions for coupling matrices in a two-layer waveguide are given. In addition, the formulation for the line-source problem in plane geometry is derived to update CCMM.
基金supported by the National Natural Science Foundation of China(11434012,41561144006)
文摘The multiple-path sound propagation in deep water is conducive to source localization of an underwater target.The transmission losses(TLs) and broadband pulse multiple-path propagation characteristics from a deep receiver is analyzed by using the experimental data from deep water area in the South China Sea(SCS).The results indicate that the width of the direct zone near the bottom of 4300 m water depth is about 30 km.The TLs in the direct zone near the bottom are much less than those in the shadow zone.It is meaningful for underwater sound source detection.Moreover,the time delay between the direct path and the bottomsurface-reflected path for a receiver near the bottom decreases monotonically with the source range.According to the linear relationship between the time delay of multipath and source range,a source localization method is presented to estimate the range of underwater target.The experimental results show that the estimated ranges are consistent with the global position system(GPS) measurements,and the mean square error of the estimation results is less than 0.28 km.
基金supported by the Natural Science Foundation of Shandong Province of China(ZR2020MA090)the National Natural Science Foundation of China(11874061)the Youth Innovation Promotion Association,CAS(2021023)。
文摘Bottom acoustic parameters are vital for studying sound propagation properties and their applications in ocean waveguides.The propagation properties and normal-mode structure of vertical-particle-velocity in an ocean environment with a thermocline in shallow water were studied in the Yellow Sea.The Results reveal that high energy of the verticalparticle-velocity exists at most depth except for near-bottom depth when the source and receiver are both below the thermocline.Moreover,high-order modes contribute more to the verticalparticle-velocity and vertical-particle-velocity-based matched-field-processing(MFP)inversion method can be highly sensitive to bottom parameters compared to sound pressure.Furthermore,the effects of the bottom absorption coefficient on the vertical-particle-velocity-based MFP inversion method are studied.It is shown that accurate sound velocity,density and water depth can be obtained only when the bottom absorption coefficient is set close to the real value during MFP.By using the vertical-particle-velocity signals recorded by vector hydrophones during the experiment and determining the bottom sound velocity,bottom density and water depth under different bottom absorption coefficients,stable inversion results were obtained.The transmission losses of the sound pressure at different ranges were used to invert the bottom absorption coefficients.The transmission losses of sound pressure calculated using the inverted bottom parameters are consistent with the experimental results obtained from the pressure hydrophones in the experiment.