The South China Sea began to outspread in the Oligocene. A great quantity of terraneous detritus was deposited in the northern continental shelf of the sea, mostly in Pearl River Mouth Basin, which constituted the mai...The South China Sea began to outspread in the Oligocene. A great quantity of terraneous detritus was deposited in the northern continental shelf of the sea, mostly in Pearl River Mouth Basin, which constituted the main paleo-Pearl River Delta. The delta developed for a long geological time and formed a superimposed area. Almost all the oil and gas fields of detrital rock reservoir distribute in this delta. Thirty-three oil sandstone core samples in the Zhujiang Formation, lower Miocene (23-16 Ma), were collected from nine wells. The illite samples with detrital K feldspar (Kfs) separated from these sandstone cores in four sub-structural belts were analysed by the high-precision 40Ar/39Ar laser stepwise heating technique. All 33 illite 40Ar/39Ar data consistently yielded gradually rising age spectra at the low-temperature steps until reaching age plateaus at mid-high temperature steps. The youngest ages corresponding to the beginning steps were interpreted as the hydrocarbon accumulation ages and the plateau ages in mid-high temperature steps as the contributions of the detrital feldspar representing the ages of the granitic parent rocks in the provenances. The ages of the detrital feldspar from the Zhujiang Formation in the four sub-structural belts were different: (1) the late Cretaceous ages in the Lufeng 13 fault structural belt; (2) the late Cretaceous and early Cretaceous-Jurassic ages in the Huizhou 21 buried hill-fault belt; (3) the Jurassic and Triassic ages in the Xijiang 24 buried hill-fault belt; and (4) the early Cretaceous - late Jurassic ages in the Panyu 4 oil area. These detrital feldspar 4~Ar/39Ar ages become younger and younger from west to east, corresponding to the age distribution of the granites in the adjacent Guangdong Province, Southern China.展开更多
The South China Sea (SCS) is characterized by abundant seamounts, which provide important information about the evolution of the SCS and related deep processes. Cenozoic volcanism in the SCS and its surroundings compr...The South China Sea (SCS) is characterized by abundant seamounts, which provide important information about the evolution of the SCS and related deep processes. Cenozoic volcanism in the SCS and its surroundings comprises three stages relative to the spreading of the SCS:prespreading (>32 Ma), syn-spreading (32-16 Ma), and post-spreading (<16 Ma). The pre-spreading magmatism predominantly occurs on the northern margin of the SCS and in South China coastal areas and shows a bi-modal affinity. The syn-spreading magmatic activity was very limited on the periphery of the SCS, but may be concentrated in the SCS. However, seafloor samples of this stage are not available yet because of overlying thick sedimentary deposits. Post-spreading magmatism is widespread in the central and southwest sub-basins of the SCS, Hainan Island, Leizhou Peninsula, Thailand, and Vietnam. These are mainly alkali basalts with subordinate tholeiites, and display OIB-type geochemical characteristics. The Dupal isotope anomaly and presence of high-magnesian olivine phenocrysts suggests their possible derivation from the Hainan mantle plume. The temporal and spatial distribution of Cenozoic volcanism in the SCS and its surroundings may be accounted for either by plate stress re-organization before and after SCS spreading, or by ridge suction of plume flow during opening of the SCS. If the latter is the case, the volcanic rocks within the SCS basin may not be typical mid-ocean ridge basalts (MORB). It remains puz-zling, however, that the transition between the South China continental margin and the SCS basin does not have features typical of a volcanic rifted margin. Clearly, the relationship between mantle plume and SCS opening needs further evaluation. A better un-derstanding of the link between deep processes and opening of the SCS not only requires enhanced studies on igneous petrogene-sis, but also is heavily dependent on systematic sampling of seafloor rocks.展开更多
Due to a lack of suitable minerals, the gas/oil emplacement ages have never been accurately obtained before. CH4-CO2-saline- bearing secondary inclusions are found in quartz from the volcanic rocks of the Yingcheng Fo...Due to a lack of suitable minerals, the gas/oil emplacement ages have never been accurately obtained before. CH4-CO2-saline- bearing secondary inclusions are found in quartz from the volcanic rocks of the Yingcheng Formation, the container rocks of the deep CO2 gas reservoir in the Songliao Basin. The inclusion fluid was trapped into microcracks in quartz during the gas em- placement and accumulation, providing an optimal target for the 40Ar-39Ar stepwise crushing technique to determine the CO2 gas emplacement age. 40Ar-39Ar dating results of a quartz sample by stepwise crushing yield a highly linear-regression isochron with an age of 78.4±1.3 Ma, indicating that the accumulation of the deep CO2 gas reservoir in the Songliao Basin occurred in the late Cretaceous. This is the first time to report an exact isotopic age for a CO2 gas reservoir, which indicates that the 40Ar-39Ar dating can serve as a new technique to date the oil/gas emplacement ages.展开更多
The exact determination of isotopic ages of hydrocarbon accumulation,reconstruction and destruction periods using traditional isotopic dating methods is complex because of the small numbers of minerals that correlate ...The exact determination of isotopic ages of hydrocarbon accumulation,reconstruction and destruction periods using traditional isotopic dating methods is complex because of the small numbers of minerals that correlate with hydrocarbons.The quantitative and direct study of hydrocarbon geochronology is therefore an important scientific problem for isotope geochronology and petroleum geology.This study obtains two isotopic ages from a quartz vein sample associated with bitumen in a reverse fault located in the Bankeng paleo-reservoir on the southern margin of the middle Yangtze block (the northern margin of the JiangnanXuefeng uplift) by inclusion 40Ar/39Ar stepwise crushing in a vacuum.Two different and good linear inverse isochrons that correspond to two age plateaus were determined.The two ages correspond to primary inclusions of about 228 Ma and secondary inclusions of about 149 Ma.These inclusion groups represent two distinct kinds of fluids.Quartz veins associated with bitumen in faulted paleo-reservoirs,which have a strict response relationship with tectonization and hydrocarbon accumulation,are the unified products of tectonic processes,hydrocarbon accumulation and reconstruction.Therefore,they can be used to constrain the hydrocarbon accumulation,reconstruction and destruction periods that are controlled by multiphase and complicated tectonic actions.The evolutionary processes of hydrocarbon accumulation can be divided into two periods consisting of a primary oil and gas reservoir formation period in the late Indosinian epoch (about 228 Ma) and a period of oil and gas reservoir reconstruction in the early Yanshan epoch (about 149 Ma).This study quantitatively reconstructs the hydrocarbon accumulation and destruction chronological framework of a giant hydrocarbon accumulation belt along the southern margin of the middle Yangtze block (the northern margin of the Jiangnan-Xuefeng uplift) controlled by multiphase and complicated tectonism.The two ages associated with hydrocarbons here correspond to the special controlling actions of continental tectonics in the Jiangnan-Xuefeng uplift that affected the timeline of reconstruction and destruction in this giant marine hydrocarbon accumulation.This study shows the feasibility and usefulness of dating inclusions with the 40Ar/39Ar technique for hydrocarbon geochronology,especially in the marine hydrocarbon accumulation region of southern China within a geological setting of old strata,high thermal evolution hydrocarbons,and complex,multiphase and multicycle tectonization.展开更多
Noble and active gases are released from geological samples during gas extraction for noble gas isotope analyses. The active gases should be removed before inletting to mass spectrometers for the analyses. The normal ...Noble and active gases are released from geological samples during gas extraction for noble gas isotope analyses. The active gases should be removed before inletting to mass spectrometers for the analyses. The normal noble gas preparation systems can clean up most geological samples. However, authigenic minerals from sedimentary rocks in oil/gas fields contain organic matter, which cannot be cleaned up by the normal preparation systems and thus influence the noble gas analyses. We introduce a novel gas purification system (PRC patent No. ZL201320117751.2), which includes several reversible purification pumps with different absorbing and degassing temperatures. It can well clean up water steam, carbon dioxide and organic gas- es. Mica minerals are often used for 40Ar/39Ar dating. A muscovite sample (2082MS) which could not be cleaned up by the normal preparation system with two SAES NP10 getters, becomes the test sample for a comparative experiment in this study. The experiment is assigned into 4 sections with the organic gas removal system (OGRS) "Closed/Opened" in turn. When the OGRS is closed only with two NP10 getters for purification, the 40At intensities increase in curves with inlet time because of impurities, the 40Ar/39Ar dating results yield age errors about +2%-±1% (20-). When the OGRS is opened for purification, in contrast, the 40Ar intensities decrease linearly with inlet time. This indicates that the gases have been cleaned up effectively, and the 40Ar/39Ar results yield ages with errors in ±0.4%. The OGRS is very helpful to obtain high-quality analysis data.展开更多
基金supported by the National Natural Science Foundation of China (40972095)the NationalS & T Major Project (2008ZX05023-03)
文摘The South China Sea began to outspread in the Oligocene. A great quantity of terraneous detritus was deposited in the northern continental shelf of the sea, mostly in Pearl River Mouth Basin, which constituted the main paleo-Pearl River Delta. The delta developed for a long geological time and formed a superimposed area. Almost all the oil and gas fields of detrital rock reservoir distribute in this delta. Thirty-three oil sandstone core samples in the Zhujiang Formation, lower Miocene (23-16 Ma), were collected from nine wells. The illite samples with detrital K feldspar (Kfs) separated from these sandstone cores in four sub-structural belts were analysed by the high-precision 40Ar/39Ar laser stepwise heating technique. All 33 illite 40Ar/39Ar data consistently yielded gradually rising age spectra at the low-temperature steps until reaching age plateaus at mid-high temperature steps. The youngest ages corresponding to the beginning steps were interpreted as the hydrocarbon accumulation ages and the plateau ages in mid-high temperature steps as the contributions of the detrital feldspar representing the ages of the granitic parent rocks in the provenances. The ages of the detrital feldspar from the Zhujiang Formation in the four sub-structural belts were different: (1) the late Cretaceous ages in the Lufeng 13 fault structural belt; (2) the late Cretaceous and early Cretaceous-Jurassic ages in the Huizhou 21 buried hill-fault belt; (3) the Jurassic and Triassic ages in the Xijiang 24 buried hill-fault belt; and (4) the early Cretaceous - late Jurassic ages in the Panyu 4 oil area. These detrital feldspar 4~Ar/39Ar ages become younger and younger from west to east, corresponding to the age distribution of the granites in the adjacent Guangdong Province, Southern China.
基金supported by the National Natural Science Foundation of China (91128203)the CAS/SAFEA International Partnership Program for Creative Research Teams (KZCX2-YW-Q04-06)the National Basic Research Program of China (2011CB808906)
文摘The South China Sea (SCS) is characterized by abundant seamounts, which provide important information about the evolution of the SCS and related deep processes. Cenozoic volcanism in the SCS and its surroundings comprises three stages relative to the spreading of the SCS:prespreading (>32 Ma), syn-spreading (32-16 Ma), and post-spreading (<16 Ma). The pre-spreading magmatism predominantly occurs on the northern margin of the SCS and in South China coastal areas and shows a bi-modal affinity. The syn-spreading magmatic activity was very limited on the periphery of the SCS, but may be concentrated in the SCS. However, seafloor samples of this stage are not available yet because of overlying thick sedimentary deposits. Post-spreading magmatism is widespread in the central and southwest sub-basins of the SCS, Hainan Island, Leizhou Peninsula, Thailand, and Vietnam. These are mainly alkali basalts with subordinate tholeiites, and display OIB-type geochemical characteristics. The Dupal isotope anomaly and presence of high-magnesian olivine phenocrysts suggests their possible derivation from the Hainan mantle plume. The temporal and spatial distribution of Cenozoic volcanism in the SCS and its surroundings may be accounted for either by plate stress re-organization before and after SCS spreading, or by ridge suction of plume flow during opening of the SCS. If the latter is the case, the volcanic rocks within the SCS basin may not be typical mid-ocean ridge basalts (MORB). It remains puz-zling, however, that the transition between the South China continental margin and the SCS basin does not have features typical of a volcanic rifted margin. Clearly, the relationship between mantle plume and SCS opening needs further evaluation. A better un-derstanding of the link between deep processes and opening of the SCS not only requires enhanced studies on igneous petrogene-sis, but also is heavily dependent on systematic sampling of seafloor rocks.
基金supported by the National Natural Science Foundation of China (40772080)Daqing Oilfield Company Ltd (DQYT-1201002-2006-JS-11351)
文摘Due to a lack of suitable minerals, the gas/oil emplacement ages have never been accurately obtained before. CH4-CO2-saline- bearing secondary inclusions are found in quartz from the volcanic rocks of the Yingcheng Formation, the container rocks of the deep CO2 gas reservoir in the Songliao Basin. The inclusion fluid was trapped into microcracks in quartz during the gas em- placement and accumulation, providing an optimal target for the 40Ar-39Ar stepwise crushing technique to determine the CO2 gas emplacement age. 40Ar-39Ar dating results of a quartz sample by stepwise crushing yield a highly linear-regression isochron with an age of 78.4±1.3 Ma, indicating that the accumulation of the deep CO2 gas reservoir in the Songliao Basin occurred in the late Cretaceous. This is the first time to report an exact isotopic age for a CO2 gas reservoir, which indicates that the 40Ar-39Ar dating can serve as a new technique to date the oil/gas emplacement ages.
基金Basin-range tectonics,composite structural system,hydrocarbon accumu-lation and reconstruction in middle Yangtze block (YPH08002)Research Fund of Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences Wuhan)+2 种基金Ministry of Education (TPR-2009-06)the National Natural Science Foundation of China (40902038)the Natural Science Foundation of Hubei Province (2009CDB217)
文摘The exact determination of isotopic ages of hydrocarbon accumulation,reconstruction and destruction periods using traditional isotopic dating methods is complex because of the small numbers of minerals that correlate with hydrocarbons.The quantitative and direct study of hydrocarbon geochronology is therefore an important scientific problem for isotope geochronology and petroleum geology.This study obtains two isotopic ages from a quartz vein sample associated with bitumen in a reverse fault located in the Bankeng paleo-reservoir on the southern margin of the middle Yangtze block (the northern margin of the JiangnanXuefeng uplift) by inclusion 40Ar/39Ar stepwise crushing in a vacuum.Two different and good linear inverse isochrons that correspond to two age plateaus were determined.The two ages correspond to primary inclusions of about 228 Ma and secondary inclusions of about 149 Ma.These inclusion groups represent two distinct kinds of fluids.Quartz veins associated with bitumen in faulted paleo-reservoirs,which have a strict response relationship with tectonization and hydrocarbon accumulation,are the unified products of tectonic processes,hydrocarbon accumulation and reconstruction.Therefore,they can be used to constrain the hydrocarbon accumulation,reconstruction and destruction periods that are controlled by multiphase and complicated tectonic actions.The evolutionary processes of hydrocarbon accumulation can be divided into two periods consisting of a primary oil and gas reservoir formation period in the late Indosinian epoch (about 228 Ma) and a period of oil and gas reservoir reconstruction in the early Yanshan epoch (about 149 Ma).This study quantitatively reconstructs the hydrocarbon accumulation and destruction chronological framework of a giant hydrocarbon accumulation belt along the southern margin of the middle Yangtze block (the northern margin of the Jiangnan-Xuefeng uplift) controlled by multiphase and complicated tectonism.The two ages associated with hydrocarbons here correspond to the special controlling actions of continental tectonics in the Jiangnan-Xuefeng uplift that affected the timeline of reconstruction and destruction in this giant marine hydrocarbon accumulation.This study shows the feasibility and usefulness of dating inclusions with the 40Ar/39Ar technique for hydrocarbon geochronology,especially in the marine hydrocarbon accumulation region of southern China within a geological setting of old strata,high thermal evolution hydrocarbons,and complex,multiphase and multicycle tectonization.
基金the National Science and Technology Major Project of China(Grant No.2011ZX05025-003-007)the 135 program of Chinese Academy of Sciences(Grant No.GIGCAS-135Y234151001)
文摘Noble and active gases are released from geological samples during gas extraction for noble gas isotope analyses. The active gases should be removed before inletting to mass spectrometers for the analyses. The normal noble gas preparation systems can clean up most geological samples. However, authigenic minerals from sedimentary rocks in oil/gas fields contain organic matter, which cannot be cleaned up by the normal preparation systems and thus influence the noble gas analyses. We introduce a novel gas purification system (PRC patent No. ZL201320117751.2), which includes several reversible purification pumps with different absorbing and degassing temperatures. It can well clean up water steam, carbon dioxide and organic gas- es. Mica minerals are often used for 40Ar/39Ar dating. A muscovite sample (2082MS) which could not be cleaned up by the normal preparation system with two SAES NP10 getters, becomes the test sample for a comparative experiment in this study. The experiment is assigned into 4 sections with the organic gas removal system (OGRS) "Closed/Opened" in turn. When the OGRS is closed only with two NP10 getters for purification, the 40At intensities increase in curves with inlet time because of impurities, the 40Ar/39Ar dating results yield age errors about +2%-±1% (20-). When the OGRS is opened for purification, in contrast, the 40Ar intensities decrease linearly with inlet time. This indicates that the gases have been cleaned up effectively, and the 40Ar/39Ar results yield ages with errors in ±0.4%. The OGRS is very helpful to obtain high-quality analysis data.