A pot experiment was conducted with multi-metal (Pb, Cd, Cu, and Zn) contaminated acidic soil to investigate changes in available metal burden resulting from the application of industrial wastes (fly ash and steel ...A pot experiment was conducted with multi-metal (Pb, Cd, Cu, and Zn) contaminated acidic soil to investigate changes in available metal burden resulting from the application of industrial wastes (fly ash and steel slag). The efficiency of amendments- induced metal stabilization was evaluated by diffusive gradients in thin films (DGT), sequential extraction, and plant uptake. The stability of remediation was assessed by an acidification test and by chemical equilibrium modeling. Addition of fly ash (20 g kg-1) and steel slag (3 g kg-1) resulted in similar increase in soil pH. Both amendments significantly decreased the concentrations of metals measured with DGT (CDGT) and the metal uptake by Oryza sativa L. Significant correlations were found between CDGT and the concentration of a combination of metal fractions (exchangeable, bound to carbonates, and bound to Fe/Mn oxides), unraveling the labile species that participate in the flux of metal resupply. The capability of metal resupply, as reflected by the R (ratio of CDGT to pore water metal concentration) values, significantly decreased in the amended soils. The CDGT correlated well with the plant uptake, suggesting that DGT is a good indicator for bioavailability. Acidification raised the extractable metal concentration in amended soil but the concentration did not return to the pre-amendment level. Equilibrium modeling indicated that the soil amendments induced the precipitation of several Fe, A1 and Ca minerals, which may play a positive role in metal stabilization. Chemical stabilization with alkaline amendments could be an effective and stable soil remediation strategy for attenuating metal bioavailability and reducing plant metal uptake.展开更多
Environmental risks pertaining to contaminated soils have been well studied,while little attention has been paid to the risks of the soils after remediation. In this study,a concept model developed based on fuzzy set ...Environmental risks pertaining to contaminated soils have been well studied,while little attention has been paid to the risks of the soils after remediation. In this study,a concept model developed based on fuzzy set theory was applied to evaluate the uncertainties of three risk indicators,namely,plant growth,groundwater safety and human health,of a restored site that had been previously polluted by heavy metals. The concept model classified the grade and importance of risk factors by an 11-level ranking system and was able to yield a comprehensive risk result rather than multi-risk results for complex risk indicators. Modeling results showed that the risks to the three indicators were effectively reduced after the remediation. Moreover,great sensitivity of the risks was found related to the weight distribution among the three risk indicators. In general,the risks of both polluted and restored soils to the environment were in the order of groundwater safety > plant growth > human health. The model was proved to solve the problems of multi-risk results due to complex risk indicators that previously encountered by other researchers,which made it helpful in decision-making and management of restored soils.展开更多
Study of the relationship between plant litter-derived dissolved organic matter(DOM) and organic pollutant transport in soil is important for understanding the role of forest litter carbon cycling in influencing pollu...Study of the relationship between plant litter-derived dissolved organic matter(DOM) and organic pollutant transport in soil is important for understanding the role of forest litter carbon cycling in influencing pollutant behaviour and fate in forest soil.With the aim of providing insight into the capacity of plant litter-derived DOM to influence sorption and desorption of selected polycyclic aromatic hydrocarbons(PAHs) on soil, batch experiments were carried out with application of a sorption-desorption model incorporating DOM effects. Freshly fallen pine(Pinus elliottii) needles were used as the source of organic matter. Input of the pine needle litter-derived DOM was found to significantly decrease desorption hysteresis as well as soil adsorption capacity of phenanthrene(PHE) and fluoranthene(FLA). Addition of 1 728 mg L-1dissolved organic carbon(DOC) lowered the organic carbon-normalized sorption distribution coefficient of PHE from 7 776 to 2 541 L kg-1C and of FLA from 11 503 to 4 368 L kg-1C. Decreases of the apparent sorption-desorption distribution coefficients of PHE and FLA with increased DOC concentration indicated that DOM favored desorption of PAHs from soil. Increases in the fraction of apparently dissolved PAHs were attributable to the dissolved PAH-DOM complexes, accounting for the dissolved proportions of 39% to 69% for PHE and 26% to 72% for FLA in the sorption and desorption processes as the concentration of the added DOM solution rose from 0 to 1 728 mg L-1. Our results suggest that pine needle litterderived DOM can have a substantial effect of inhibiting PAHs sorption and promoting PAHs desorption, thus leading to enhanced leaching in soil, which should be taken into account in risk assessment of PAHs accumulated in forest soil.展开更多
Knowledge of cellular metal homeostasis will provide a better understanding of the mechanisms involved in metal tolerance and hyperaccumulation in metal-hyperaccumulating plants. Energy dispersive X-ray spectrometry ...Knowledge of cellular metal homeostasis will provide a better understanding of the mechanisms involved in metal tolerance and hyperaccumulation in metal-hyperaccumulating plants. Energy dispersive X-ray spectrometry (EDS) was used to determine the localization of cadmium (Cd) in leaves of the Zn/Cd hyperaccumulator Picris divaricata which had a shoot Cd concentration of 565 mg kg-1 after 2 weeks of growth in solution culture supplying 10μ tmol L^-1 CdCl2. The results indicated that Cd was distributed mainly in the trichomes, upper and lower epidermis and bundle sheath cells, with a relatively low level of Cd in mesophyll cells. Mesophyll protoplasts isolated from leaves remained viable after 24 h exposure to CdCl2 at a concentration up to 1 mmol L^-1, indicating their high tolerance to Cd. The intracellular Cd was visualized by staining with Leadmium Green dye, a cellular permeable Cd fluorescence probe. The results showed that the majority of protoplasts (〉 82%) did not accumulate Cd, with only a minority (〈 18%) showing Cd accumulation. In the Cd-accumulating protoplasts, Cd accumulation was depressed by the addition of Fe^2+, Mn^2+ and the metabolic inhibitor carbonyl cyanide m-chlorophenylhydrazone (CCCP), but not by Ca^2+ or Zn^2+. Furthermore, the entire process of Cd uptake from external solution into the cytoplasm and subsequent sequestration into vacuoles was successfully recorded by confocal images. These results suggested that reduced cellular Cd accumulation and efficient Cd vacuolar sequestration in mesophyll cells might be responsible for cellular Cd tolerance and distribution in the leaves of P. divaricata.展开更多
Bioremediation of contaminated soil and water is an emerging technology in the field of environmental science and engineering.It uses biological organisms such as bacteria,fungi or even plants to aid in degrading and ...Bioremediation of contaminated soil and water is an emerging technology in the field of environmental science and engineering.It uses biological organisms such as bacteria,fungi or even plants to aid in degrading and removing hazardous substances from the contaminated area.Bioremediation has become a hot spot of research because of its characteristics such as low energy consumption,high efficiency and environmental safety.Meanwhile,it is a challenging area that requires researchers' further commitment.展开更多
基金Supported by the NSFC-Guangdong Joint Foundation of China(No.U0833004)the National Natural Science Foundation of China(No.41101483)the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2011),China
文摘A pot experiment was conducted with multi-metal (Pb, Cd, Cu, and Zn) contaminated acidic soil to investigate changes in available metal burden resulting from the application of industrial wastes (fly ash and steel slag). The efficiency of amendments- induced metal stabilization was evaluated by diffusive gradients in thin films (DGT), sequential extraction, and plant uptake. The stability of remediation was assessed by an acidification test and by chemical equilibrium modeling. Addition of fly ash (20 g kg-1) and steel slag (3 g kg-1) resulted in similar increase in soil pH. Both amendments significantly decreased the concentrations of metals measured with DGT (CDGT) and the metal uptake by Oryza sativa L. Significant correlations were found between CDGT and the concentration of a combination of metal fractions (exchangeable, bound to carbonates, and bound to Fe/Mn oxides), unraveling the labile species that participate in the flux of metal resupply. The capability of metal resupply, as reflected by the R (ratio of CDGT to pore water metal concentration) values, significantly decreased in the amended soils. The CDGT correlated well with the plant uptake, suggesting that DGT is a good indicator for bioavailability. Acidification raised the extractable metal concentration in amended soil but the concentration did not return to the pre-amendment level. Equilibrium modeling indicated that the soil amendments induced the precipitation of several Fe, A1 and Ca minerals, which may play a positive role in metal stabilization. Chemical stabilization with alkaline amendments could be an effective and stable soil remediation strategy for attenuating metal bioavailability and reducing plant metal uptake.
基金Supported by the National Natural Science Foundation of China(Nos.41171374 and 41101483)the Fundamental Research Funds for the Central Universities of China(No.101gzd10)+1 种基金the National Science Foundation for Distinguished Young Scholars of China(No.41225004)the National High Technology Research and Development Program of China(No.2012-AA-06A202)
文摘Environmental risks pertaining to contaminated soils have been well studied,while little attention has been paid to the risks of the soils after remediation. In this study,a concept model developed based on fuzzy set theory was applied to evaluate the uncertainties of three risk indicators,namely,plant growth,groundwater safety and human health,of a restored site that had been previously polluted by heavy metals. The concept model classified the grade and importance of risk factors by an 11-level ranking system and was able to yield a comprehensive risk result rather than multi-risk results for complex risk indicators. Modeling results showed that the risks to the three indicators were effectively reduced after the remediation. Moreover,great sensitivity of the risks was found related to the weight distribution among the three risk indicators. In general,the risks of both polluted and restored soils to the environment were in the order of groundwater safety > plant growth > human health. The model was proved to solve the problems of multi-risk results due to complex risk indicators that previously encountered by other researchers,which made it helpful in decision-making and management of restored soils.
基金Supported by the National Natural Science Foundation of China(No.41001322)the National Funds for Distinguished Young Scientists of China(No.41225004)+2 种基金the Guangdong Province Higher Vocational Colleges and Schools Pearl River Scholar Funded Scheme,Chinathe Special Fund for Scientific Research in the Public Interest of Environmental Protection,Ministry of Environmental Protection of China(No.201109020)the Fundamental Research Funds for the Central Universities of China(No.11lgpy98)
文摘Study of the relationship between plant litter-derived dissolved organic matter(DOM) and organic pollutant transport in soil is important for understanding the role of forest litter carbon cycling in influencing pollutant behaviour and fate in forest soil.With the aim of providing insight into the capacity of plant litter-derived DOM to influence sorption and desorption of selected polycyclic aromatic hydrocarbons(PAHs) on soil, batch experiments were carried out with application of a sorption-desorption model incorporating DOM effects. Freshly fallen pine(Pinus elliottii) needles were used as the source of organic matter. Input of the pine needle litter-derived DOM was found to significantly decrease desorption hysteresis as well as soil adsorption capacity of phenanthrene(PHE) and fluoranthene(FLA). Addition of 1 728 mg L-1dissolved organic carbon(DOC) lowered the organic carbon-normalized sorption distribution coefficient of PHE from 7 776 to 2 541 L kg-1C and of FLA from 11 503 to 4 368 L kg-1C. Decreases of the apparent sorption-desorption distribution coefficients of PHE and FLA with increased DOC concentration indicated that DOM favored desorption of PAHs from soil. Increases in the fraction of apparently dissolved PAHs were attributable to the dissolved PAH-DOM complexes, accounting for the dissolved proportions of 39% to 69% for PHE and 26% to 72% for FLA in the sorption and desorption processes as the concentration of the added DOM solution rose from 0 to 1 728 mg L-1. Our results suggest that pine needle litterderived DOM can have a substantial effect of inhibiting PAHs sorption and promoting PAHs desorption, thus leading to enhanced leaching in soil, which should be taken into account in risk assessment of PAHs accumulated in forest soil.
基金Supported by the National Natural Science Foundation of China(Nos.40901151 and 31000248)the NSFC-Guangdong Joint Foundation of China(No.U0833004)+1 种基金the Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme,China(2011)the Fundamental Research Funds for the Central Universities,China(No.09lgpy23)
文摘Knowledge of cellular metal homeostasis will provide a better understanding of the mechanisms involved in metal tolerance and hyperaccumulation in metal-hyperaccumulating plants. Energy dispersive X-ray spectrometry (EDS) was used to determine the localization of cadmium (Cd) in leaves of the Zn/Cd hyperaccumulator Picris divaricata which had a shoot Cd concentration of 565 mg kg-1 after 2 weeks of growth in solution culture supplying 10μ tmol L^-1 CdCl2. The results indicated that Cd was distributed mainly in the trichomes, upper and lower epidermis and bundle sheath cells, with a relatively low level of Cd in mesophyll cells. Mesophyll protoplasts isolated from leaves remained viable after 24 h exposure to CdCl2 at a concentration up to 1 mmol L^-1, indicating their high tolerance to Cd. The intracellular Cd was visualized by staining with Leadmium Green dye, a cellular permeable Cd fluorescence probe. The results showed that the majority of protoplasts (〉 82%) did not accumulate Cd, with only a minority (〈 18%) showing Cd accumulation. In the Cd-accumulating protoplasts, Cd accumulation was depressed by the addition of Fe^2+, Mn^2+ and the metabolic inhibitor carbonyl cyanide m-chlorophenylhydrazone (CCCP), but not by Ca^2+ or Zn^2+. Furthermore, the entire process of Cd uptake from external solution into the cytoplasm and subsequent sequestration into vacuoles was successfully recorded by confocal images. These results suggested that reduced cellular Cd accumulation and efficient Cd vacuolar sequestration in mesophyll cells might be responsible for cellular Cd tolerance and distribution in the leaves of P. divaricata.
文摘Bioremediation of contaminated soil and water is an emerging technology in the field of environmental science and engineering.It uses biological organisms such as bacteria,fungi or even plants to aid in degrading and removing hazardous substances from the contaminated area.Bioremediation has become a hot spot of research because of its characteristics such as low energy consumption,high efficiency and environmental safety.Meanwhile,it is a challenging area that requires researchers' further commitment.