As the highest, coldest and driest place in Antarctica, Dome A provides exceptionally good observing conditions for ground-based observations over terahertz wavebands. The 5 m Dome A Terahertz Explorer (DATES) has b...As the highest, coldest and driest place in Antarctica, Dome A provides exceptionally good observing conditions for ground-based observations over terahertz wavebands. The 5 m Dome A Terahertz Explorer (DATES) has been proposed to explore new terahertz windows, primarily over wavelengths between 350 and 200 pm. DATE5 will be an open-air, fully-steerable telescope that can function by unmanned operation with remote control. The telescope will be able to endure the harsh polar environment, including high altitude, very low temperature and very low air pressure. The unique specifications, including high accuracies for surface shape and pointing and fully automatic year-around remote operation, along with a stringent limit on the periods of on-site assembly, testing and maintenance, bring a number of challenges to the design, construction, assembly and operation of this telescope. This paper intro- duces general concepts related to the design of the DATE5 antenna. Beginning from an overview of the environmental and operational limitations, the design specifications and requirements of the DATE5 antenna are listed. From these, major aspects on the conceptual design studies, including the antenna optics, the backup structure, the pan- els, the subreflector, the mounting and the antenna base structure, are explained. Some critical issues of performance are justified through analyses that use computational fluid dynamics, thermal analysis and de-icing studies, and the proposed approaches for test operation and on-site assembly. Based on these studies, we conclude that the specifications of the DATE5 antenna can generally be met by using enhanced technological approaches.展开更多
The effects of temperature and wavelength choice on in-situ dissolution test instrument of Cimetidine were studied. Absorbance (A)〈 1.0 is required when using a fiber-optic dissolution test system. The detection wa...The effects of temperature and wavelength choice on in-situ dissolution test instrument of Cimetidine were studied. Absorbance (A)〈 1.0 is required when using a fiber-optic dissolution test system. The detection wavelength of 2 (218 nm) was replaced by 244 nm to carry out this test. The absorbance of Cimetidine solution at different temperature showed an obvious change. Calibration of Cimetidine solution should be tested at the same temperature (37° C) with the test solution. A suitable wavelength with smaller tangent slope could be chosen for in-situ dissolution test of Cimetidine tablets.展开更多
We present the analysis of Spitzer/IRAC and near infrared imaging obser- vation of AFGL 5157, an active star forming region. In the IRAC images, this region shows strong emissions of polycyclic aromatic hydrocarbons i...We present the analysis of Spitzer/IRAC and near infrared imaging obser- vation of AFGL 5157, an active star forming region. In the IRAC images, this region shows strong emissions of polycyclic aromatic hydrocarbons in channel 4 and emis- sions of H2 in channel 2. Many of the H2 features are aligned to form jet-like struc- tures. Three bipolar jets in the NHa core region and a couple of jets northwest of the core have been identified. We identify the possible driving agents of the bipolar jets and show them to be very young. An embedded cluster has been detected in the NH3 core; many members in the cluster have spectral energy distributions that increase from JHK bands toward longer wavelengths, indicative of their early evolutionary stages. Millimeter and submillimeter continuum emissions in the NH3 core and the northwest subregion are found to coincide spatially with these presumable Class0/I sources. The existence of H2 bipolar jets and very young stellar objects suggests that star formation is continuing at the present epoch in these subregions. Combining in- formation from previous studies, we propose a sequential star formation scenario in the whole AFGL 5157 region.展开更多
We report here Atacama Large Millimeter/submillimeter Array(ALMA)N2H+(1-0)images of the Orion Molecular Cloud 2 and 3(OMC-2/3)with high angular resolution(3"or 1200 au)and high spatial dynamic range.Combining a d...We report here Atacama Large Millimeter/submillimeter Array(ALMA)N2H+(1-0)images of the Orion Molecular Cloud 2 and 3(OMC-2/3)with high angular resolution(3"or 1200 au)and high spatial dynamic range.Combining a dataset from the ALMA main array,Atacama Compact Array(ACA),Nobeyama 45-m Telescope and Very Large Array(VLA)(providing temperature measurement on matching scales),we find that most of the dense gas in OMC-2/3 is subsonic(σQNT/cs=0.62)with a mean line width(△v)of 0.39 kms-1 full width at half maximum(FWHM).This is markedly different from the majority of previous observations of massive star-forming regions.In contrast,line widths from the Nobeyama Telescope are transonic at 0.69 km s-1(σNT/cs=1.08).We demonstrated that the larger line widths obtained by the single-dish telescope arose from unresolved sub-structures within their respective beams.The dispersions from larger scalesσls(as traced by the Nobeyama Telescope)can be decomposed into three components such thatσls2=σss2+σbm2+σrd2,where small-scaleσss is the line dispersion of each ALMA beam,bulk motionσbm is dispersion between peak velocity of each ALMA beam andσrd is the residual dispersion.Such decomposition,though purely empirical,appears to be robust throughout our data cubes.Apparent supersonic line widths,commonly found in massive molecular clouds,are thus likely due to the effect of poor spatial resolution.The observed non-thermal line dispersion(sometimes referred to as’turbulence’)transits from supersonic to subsonic at~0.05 pc scales in the OMC-2/3 region.Such transition could be commonly found with sufficient spatial(not just angular)resolution,even in regions with massive young clusters,such as the Orion molecular clouds studied here.展开更多
基金Supported by the National Natural Science Foundation of China
文摘As the highest, coldest and driest place in Antarctica, Dome A provides exceptionally good observing conditions for ground-based observations over terahertz wavebands. The 5 m Dome A Terahertz Explorer (DATES) has been proposed to explore new terahertz windows, primarily over wavelengths between 350 and 200 pm. DATE5 will be an open-air, fully-steerable telescope that can function by unmanned operation with remote control. The telescope will be able to endure the harsh polar environment, including high altitude, very low temperature and very low air pressure. The unique specifications, including high accuracies for surface shape and pointing and fully automatic year-around remote operation, along with a stringent limit on the periods of on-site assembly, testing and maintenance, bring a number of challenges to the design, construction, assembly and operation of this telescope. This paper intro- duces general concepts related to the design of the DATE5 antenna. Beginning from an overview of the environmental and operational limitations, the design specifications and requirements of the DATE5 antenna are listed. From these, major aspects on the conceptual design studies, including the antenna optics, the backup structure, the pan- els, the subreflector, the mounting and the antenna base structure, are explained. Some critical issues of performance are justified through analyses that use computational fluid dynamics, thermal analysis and de-icing studies, and the proposed approaches for test operation and on-site assembly. Based on these studies, we conclude that the specifications of the DATE5 antenna can generally be met by using enhanced technological approaches.
基金the Xinjiang Uygur Autonomous Region Natural Science Fund (No.2011211A041) Xinjiang Uygur Autonomous Region Science and Technology Plan (No.200910107)
文摘The effects of temperature and wavelength choice on in-situ dissolution test instrument of Cimetidine were studied. Absorbance (A)〈 1.0 is required when using a fiber-optic dissolution test system. The detection wavelength of 2 (218 nm) was replaced by 244 nm to carry out this test. The absorbance of Cimetidine solution at different temperature showed an obvious change. Calibration of Cimetidine solution should be tested at the same temperature (37° C) with the test solution. A suitable wavelength with smaller tangent slope could be chosen for in-situ dissolution test of Cimetidine tablets.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10873037 and 10921063)partially supported by the National Basic Research Program of China (973 Program, 2007CB815406)
文摘We present the analysis of Spitzer/IRAC and near infrared imaging obser- vation of AFGL 5157, an active star forming region. In the IRAC images, this region shows strong emissions of polycyclic aromatic hydrocarbons in channel 4 and emis- sions of H2 in channel 2. Many of the H2 features are aligned to form jet-like struc- tures. Three bipolar jets in the NHa core region and a couple of jets northwest of the core have been identified. We identify the possible driving agents of the bipolar jets and show them to be very young. An embedded cluster has been detected in the NH3 core; many members in the cluster have spectral energy distributions that increase from JHK bands toward longer wavelengths, indicative of their early evolutionary stages. Millimeter and submillimeter continuum emissions in the NH3 core and the northwest subregion are found to coincide spatially with these presumable Class0/I sources. The existence of H2 bipolar jets and very young stellar objects suggests that star formation is continuing at the present epoch in these subregions. Combining in- formation from previous studies, we propose a sequential star formation scenario in the whole AFGL 5157 region.
基金the National Natural Science Foundation of China(Grant Nos.11988101,11725313 and 11629302)the CAS International Partnership Program(No.114A11KYSB20160008)。
文摘We report here Atacama Large Millimeter/submillimeter Array(ALMA)N2H+(1-0)images of the Orion Molecular Cloud 2 and 3(OMC-2/3)with high angular resolution(3"or 1200 au)and high spatial dynamic range.Combining a dataset from the ALMA main array,Atacama Compact Array(ACA),Nobeyama 45-m Telescope and Very Large Array(VLA)(providing temperature measurement on matching scales),we find that most of the dense gas in OMC-2/3 is subsonic(σQNT/cs=0.62)with a mean line width(△v)of 0.39 kms-1 full width at half maximum(FWHM).This is markedly different from the majority of previous observations of massive star-forming regions.In contrast,line widths from the Nobeyama Telescope are transonic at 0.69 km s-1(σNT/cs=1.08).We demonstrated that the larger line widths obtained by the single-dish telescope arose from unresolved sub-structures within their respective beams.The dispersions from larger scalesσls(as traced by the Nobeyama Telescope)can be decomposed into three components such thatσls2=σss2+σbm2+σrd2,where small-scaleσss is the line dispersion of each ALMA beam,bulk motionσbm is dispersion between peak velocity of each ALMA beam andσrd is the residual dispersion.Such decomposition,though purely empirical,appears to be robust throughout our data cubes.Apparent supersonic line widths,commonly found in massive molecular clouds,are thus likely due to the effect of poor spatial resolution.The observed non-thermal line dispersion(sometimes referred to as’turbulence’)transits from supersonic to subsonic at~0.05 pc scales in the OMC-2/3 region.Such transition could be commonly found with sufficient spatial(not just angular)resolution,even in regions with massive young clusters,such as the Orion molecular clouds studied here.