为探索近红外光谱结合深度学习网络对紫菜水分定量检测的可行性,本研究检测并收集了479组干条斑紫菜的光谱数据和水分含量数据,分别使用四种方法对其中的光谱数据进行了预处理,并在全波段下建立了四种传统定量水分预测模型和一种卷积神...为探索近红外光谱结合深度学习网络对紫菜水分定量检测的可行性,本研究检测并收集了479组干条斑紫菜的光谱数据和水分含量数据,分别使用四种方法对其中的光谱数据进行了预处理,并在全波段下建立了四种传统定量水分预测模型和一种卷积神经网络(Convolution Neural Networks,CNN)深度学习水分预测模型。对比五种模型预测结果后发现,在S-G平滑结合二阶导数的预处理方法下所建立的CNN模型预测效果最佳,其预测均方根误差(Root-Mean-Square Error of Prediction,RMSEP)值为0.456,预测集决定系数(Coefficient of Determination of Prediction,R_(p)^(2))值为0.990,优化后,该模型的RMSEP值降至0.342,R_(p)^(2)值可以达到0.994(>0.8),同时,外部验证相对误差(Ratio of Performance to Deviation for Validation,RPD)值达6.155(>3),证明了模型实际应用于农业和食品工业的可能性。该CNN模型能够快速、准确、无损地预测条斑紫菜的水分含量,提高了紫菜水分检测的效率和准确性,为相关干制水产品的质量控制提供了重要的参考依据。展开更多
为了解决在实际决策时,由于知识背景不同决策者采用不同粒度语言术语集来表达而导致决策结果不准确的问题,本文提出了一种基于多粒度犹豫模糊语言术语集的逼近理想解排序(technique for order preference by similarity to ideal soluti...为了解决在实际决策时,由于知识背景不同决策者采用不同粒度语言术语集来表达而导致决策结果不准确的问题,本文提出了一种基于多粒度犹豫模糊语言术语集的逼近理想解排序(technique for order preference by similarity to ideal solution,TOPSIS)决策方法。首先选用各术语集中的最大粒度作为标准粒度,通过转换算法将每个决策者的语言术语集转换到同一标准粒度下进行集结,得出相应的隶属度语言术语集;然后结合TOPSIS方法,计算每个备选方案与正、负理想点距离,以相对贴近度的大小排序实现最优方案的选择;最后,通过一个实例,验证该方法的可行性和优越性。本文所提方法可应用于最优方案的选择问题中,提升决策结果准确度。展开更多
文摘为探索近红外光谱结合深度学习网络对紫菜水分定量检测的可行性,本研究检测并收集了479组干条斑紫菜的光谱数据和水分含量数据,分别使用四种方法对其中的光谱数据进行了预处理,并在全波段下建立了四种传统定量水分预测模型和一种卷积神经网络(Convolution Neural Networks,CNN)深度学习水分预测模型。对比五种模型预测结果后发现,在S-G平滑结合二阶导数的预处理方法下所建立的CNN模型预测效果最佳,其预测均方根误差(Root-Mean-Square Error of Prediction,RMSEP)值为0.456,预测集决定系数(Coefficient of Determination of Prediction,R_(p)^(2))值为0.990,优化后,该模型的RMSEP值降至0.342,R_(p)^(2)值可以达到0.994(>0.8),同时,外部验证相对误差(Ratio of Performance to Deviation for Validation,RPD)值达6.155(>3),证明了模型实际应用于农业和食品工业的可能性。该CNN模型能够快速、准确、无损地预测条斑紫菜的水分含量,提高了紫菜水分检测的效率和准确性,为相关干制水产品的质量控制提供了重要的参考依据。
文摘为了解决在实际决策时,由于知识背景不同决策者采用不同粒度语言术语集来表达而导致决策结果不准确的问题,本文提出了一种基于多粒度犹豫模糊语言术语集的逼近理想解排序(technique for order preference by similarity to ideal solution,TOPSIS)决策方法。首先选用各术语集中的最大粒度作为标准粒度,通过转换算法将每个决策者的语言术语集转换到同一标准粒度下进行集结,得出相应的隶属度语言术语集;然后结合TOPSIS方法,计算每个备选方案与正、负理想点距离,以相对贴近度的大小排序实现最优方案的选择;最后,通过一个实例,验证该方法的可行性和优越性。本文所提方法可应用于最优方案的选择问题中,提升决策结果准确度。