期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Enhancing I^(0)/I^(-)Conversion Efficiency by Starch Confinement in Zinc-lodine Battery 被引量:1
1
作者 Danyang Zhao qiancheng zhu +4 位作者 qiancheng Zhou Wenming Zhang Ying Yu Shuo Chen Zhifeng Ren 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期114-120,共7页
The redox couple of I^(0)/I^(-)in aqueous rechargeable iodine–zinc(I^(2)-Zn)batteries is a promising energy storage resource since it is safe and cost-effective,and provides steady output voltage.However,the cycle li... The redox couple of I^(0)/I^(-)in aqueous rechargeable iodine–zinc(I^(2)-Zn)batteries is a promising energy storage resource since it is safe and cost-effective,and provides steady output voltage.However,the cycle life and efficiency of these batteries remain unsatisfactory due to the uncontrolled shuttling of polyiodide(I_(3)^(-)and I_(5)^(-))and side reactions on the Zn anode.Starch is a very low-cost and widely sourced food used daily around the world.“Starch turns blue when it encounters iodine”is a classic chemical reaction,which results from the unique structure of the helix starch molecule–iodine complex.Inspired by this,we employ starch to confine the shuttling of polyiodide,and thus,the I^(0)/I^(-)conversion efficiency of an I^(2)-Zn battery is clearly enhanced.According to the detailed characterizations and theoretical DFT calculation results,the enhancement of I^(0)/I^(-)conversion efficiency is mainly originated from the strong bonding between the charged products of I_(3)^(-)and I_(5)^(-)and the rich hydroxyl groups in starch.This work provides inspiration for the rational design of high-performance and low-cost I^(2)-Zn in AZIBs. 展开更多
关键词 aqueous battery conversion efficiency iodine-zinc battery starch confinement
下载PDF
Fibroblast growth factor 21 inhibits ferroptosis following spinal cord injury by regulating heme oxygenase-1
2
作者 Qi Gu Weiping Sha +8 位作者 Qun Huang Jin Wang Yi zhu Tianli Xu Zhenhua Xu qiancheng zhu Jianfei Ge Shoujin Tian Xiaolong Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1568-1574,共7页
Interfering with the ferroptosis pathway is a new strategy for the treatment of spinal cord injury.Fibroblast growth factor 21 can inhibit ferro ptosis and promote neurofunctional recovery,while heme oxygenase-1 is a ... Interfering with the ferroptosis pathway is a new strategy for the treatment of spinal cord injury.Fibroblast growth factor 21 can inhibit ferro ptosis and promote neurofunctional recovery,while heme oxygenase-1 is a regulator of iron and reactive oxygen species homeostasis.The relationship between heme oxygenase-1and ferroptosis remains controve rsial.In this study,we used a spinal co rd injury rat model to show that the levels of fibroblast growth factor 21 in spinal co rd tissue decreased after spinal cord injury.In addition,there was a significant aggravation of ferroptosis and a rapid increase in heme oxygenase-1 expression after spinal cord injury.Furthe r,heme oxygenase-1 aggravated fe rroptosis after spinal cord injury,while fibroblast growth factor 21 inhibited fe rroptosis by downregulating heme oxygenase-1.Thus,the activation of fibroblast growth factor 21 may provide a potential treatment for spinal co rd injury.These findings could provide a new potential mechanistic explanation for fibroblast growth factor 21 in the treatment of spinal cord injury. 展开更多
关键词 ferroptosis fibroblast growth factor 21 functional recovery heme oxygenase-1 lipid peroxidation NEURON reactive oxygen species spinal cord injury
下载PDF
Enhancing the activity of FeNi bimetallic electrocatalysts on overall water splitting by Nd_(2)O_(3)-induced FeNi lattice contraction
3
作者 Jiajia Li Yunong Qin +4 位作者 Tianyu Tan qiancheng zhu Bo Ouyang Erjun Kan Wenming Zhang 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期42-50,I0003,共10页
The development of high-efficiency and cost-effective bifunctional electrocatalysts for overall water splitting remains a formidable challenge.Herein,FeNi-Nd_(2)O_(3) nanoparticles anchored on N-doped carbon nanotubes... The development of high-efficiency and cost-effective bifunctional electrocatalysts for overall water splitting remains a formidable challenge.Herein,FeNi-Nd_(2)O_(3) nanoparticles anchored on N-doped carbon nanotubes(FeNi-Nd_(2)O_(3)/NCN) are designed for highly effective overall water splitting via a facile two-step hydrothermal approach.The synthetic FeNi-Nd_(2)O_(3) hetero-trimers(Fe 2p-Ni 2p-Nd 3d orbital coupling)on NCN achieve excellent oxygen evolution reaction(OER) and hydrogen evolution reaction(HER) activities with overpotentials of 270 and 120 mV at 10 mA cm^(-2) in 1 M KOH solution.Moreover,a small voltage of 1.52 V at 10 mA cm^(-2) is achieved when FeNi-Nd_(2)O_(3)/NCN is assessed as bifunctional catalyst for overall water splitting,which is superior to the typically integrated Pt/C and RuO_(2) counterparts(1.54 V at 10 mA cm^(-2)).The related characterizations including X-ray absorption fine structure(XAFS)spectroscopy show that the remarkably improved activity is originated from Nd_(2)O_(3)-induced FeNi bimetallic lattice contraction.Furthermore,density functional theory(DFT) calculations indicate that the lattice contraction reduces binding energies of intermediates by downshifting the position of FeNi bimetallic d-band center relative to the Fermi level to optimize catalytic performance.Therefore,the Nd_(2)O_(3)-induced FeNi bimetallic lattice contraction may provide a new perspective for designing and synthesizing innovative catalytic systems. 展开更多
关键词 Bifunctional catalyst FeNi-Nd_(2)O_(3)hetero-trimers Lattice contraction Overall water splitting
下载PDF
Design of multidimensional nanocomposite material to realize the application both in energy storage and electrocatalysis 被引量:2
4
作者 qiancheng zhu Desheng Cai +5 位作者 Xiaoqin Lan Guodong Shi Kai Jin Jianqing Zhou Wenjuan Chen Ying Yu 《Science Bulletin》 SCIE EI CSCD 2018年第3期152-154,共3页
The development of clean,sustainable and renewable energy storage systems is in urgent need with the fast-growing energy demand in the areas of electric vehicles and mobile electronics etc.Lithium-ion batteries(LIBs)h... The development of clean,sustainable and renewable energy storage systems is in urgent need with the fast-growing energy demand in the areas of electric vehicles and mobile electronics etc.Lithium-ion batteries(LIBs)have been deemed to be the most promising energy storage devices for their high power density,long cycle life and fast charge-discharge rates[1].Transition 展开更多
关键词 存储系统 精力 材料设计 应用程序 多维 锂离子电池 存储设备 电子学
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部