A wide range of terrain features and landforms,which are exemplified by intricate geological formations and diverse rock compositions,are found in the western mountainous regions of China.These areas frequently encoun...A wide range of terrain features and landforms,which are exemplified by intricate geological formations and diverse rock compositions,are found in the western mountainous regions of China.These areas frequently encounter geological disasters.As one of the natural disasters,landslides lead to considerable loss of human life and property.Considering mitigation of the losses caused by landslide disasters,a necessary measure for disaster prevention and mitigation involves conducting detailed investigations and monitoring of landslides,which is also the cornerstone of landslide warning.This study compares and analyzes the feasibility of the magnetotelluric detection method for landslides using the results of engineering geological surveys and landslide monitoring.The study aims to address the scientific problem of the validity of using magnetotelluric methods to detect landslide development processes.The Tangjiawan landslide signal on the left side of the K94+000~K94+145 section of the Wenma Expressway is analyzed by employing engineering geological survey,magnetotelluric detection,landslide monitoring,landslide analysis,and other methods.Analysis results provide the static electrical characteristics of lithology,structure,and groundwater,as well as the dynamic electrical characteristics of landslide development.This study focuses on analyzing the relationship between the methods of magnetotelluric detection and engineering geological surveys and the results of landslide monitoring.The workflow and methods for data collection,processing,inversion,interpretation,and analysis using the magnetotelluric method to detect the dynamic development process of landslides are presented in the conclusion.Preliminary conclusions indicate a strong correlation between the dynamic changes in magnetotelluric wave impedance with the surface displacement of landslides and the dynamic changes in groundwater.The use of the magnetotelluric method for landslide detection and monitoring is a feasible example.The research results can offer certain technical references for the detection and monitoring of landslides using magnetotelluric methods and also provide references and guidance for the selection of diversified landslide monitoring methods in the future.展开更多
Background Many countries have already banned the use of antibiotics in animal husbandry,making it extremely difficult to maintain animal health in livestock breeding.In the livestock industry,there is an urgent need ...Background Many countries have already banned the use of antibiotics in animal husbandry,making it extremely difficult to maintain animal health in livestock breeding.In the livestock industry,there is an urgent need to develop alternatives to antibiotics which will not lead to drug resistance on prolonged use.In this study,eighteen castrated bulls were randomly divided into two groups.The control group(CK)was fed the basal diet,while the antimicrobial peptide group(AP)was fed the basal diet supplemented with 8 g of antimicrobial peptides in the basal diet for the experimental period of 270 d.They were then slaughtered to measure production performance,and the ruminal contents were isolated for metagenomic and metabolome sequencing analysis.Result The results showed that antimicrobial peptides could improve the daily weight,carcass weight,and net meat weight of the experimental animals.Additionally,the rumen papillae diameter and the micropapillary density in the AP were significantly greater than those in the CK.Furthermore,the determination of digestive enzymes and fermentation parameters showed that the contents of protease,xylanase,andβ-glucoside in the AP were greater than those in the CK.However,lipase content in the CK was greater than that in the AP.Moreover,the content of acetate,propionate,butyrate,and valerate was found to be greater in AP than those in CK.The metagenomic analysis annotated 1993 differential microorganisms at the species level.The KEGG enrichment of these microorganisms revealed that the enrichment of drug resistance-related pathways was dramatically decreased in the AP,whereas the enrichment of immune-related pathways was significantly increased.There was also a significant reduction in the types of viruses in the AP.187 probiotics with significant differences were found,135 of which were higher in AP than in CK.It was also found that the antimicrobial mechanism of the antimicrobial peptides was quite specific.Seven low-abundance microorganisms(Acinetobactersp.Ac1271,Aequorivita soesokkakensis,Bacillus lacisalsi,Haloferax larsenii,Lysinibacillussp.3DF0063,Parabacteroidessp.217,Streptomycessp.So13.3)were found to regulate growth performance of the bull negatively.Metabolome analysis identified 45 differentially differential metabolites that significantly different between the CK and the AP groups.Seven upregulated metabolites(4-pyridoxic acid,Ala-Phe,3-ureidopropionate,hippuric acid,terephthalic acid,L-alanine,uridine 5-monophosphate)improve the growth performance of the experimental animals.To detect the interactions between the rumen microbiome and metabolism,we associated the rumen microbiome with the metabolome and found that negative regulation between the above 7 microorganisms and 7 metabolites.Conclusions This study shows that antimicrobial peptides can improve the growth performance of animals while resisting viruses and harmful bacteria and are expected to become healthy alternatives to antibiotics.We demonstrated a new antimicrobial peptides pharmacological model.We demonstrated low-abundance microorganisms may play a role by regulating the content of metabolites.展开更多
Metasurfaces have drawn significant attentions due to their superior capability in tailoring electromagnetic waves with a wide frequency range, from microwave to visible light. Recently, programmable metasurfaces have...Metasurfaces have drawn significant attentions due to their superior capability in tailoring electromagnetic waves with a wide frequency range, from microwave to visible light. Recently, programmable metasurfaces have demonstrated the ability of manipulating the amplitude or phase of electromagnetic waves in a programmable manner in real time, which renders them especially appealing in the applications of wireless communications. In this paper, we present the fundamental principle of applying programmable metasurface as transmitter for wireless communications. Then, we establish a prototype system of metasurface-based transmitter to conduct several experiments and measurements over the air, which practically demonstrate the feasibility of using programmable metasurfaces in future communication systems. By exploiting the dynamically controllable property of programmable metasurface, the design, implementation and experimental evaluation of the proposed metasurface-based wireless communication system are presented with the prototype, which realizes single carrier quadrature phase shift keying(QPSK) transmission over the air. In the developed prototype, the phase of the reflected electromagnetic wave of programma-ble metasurface is directly manipulated in real time according to the baseband control signal, which achieves 2.048 Mbps data transfer rate with video streaming transmission over the air. In addition, experimental result is provided to compare the performance of the proposed metasurface-based architecture against the conventional one. With the slight increase of the transmit power by 5 dB, the same bit error rate(BER) performance can be achieved as the conventional system in the absence of channel coding. Such a result is encouraging considering that the metasurface-based system has the advantages of low hardware cost and simple structure, thus leading to a promising new architecture for wireless communications.展开更多
Black spot disease in poplar is a disease of the leaf caused by fungus. The major pathogen is Marssonina brunnea f. sp. multigermtubi. To date, little is known about the molecular mechanism of poplar (M. brunnea) in...Black spot disease in poplar is a disease of the leaf caused by fungus. The major pathogen is Marssonina brunnea f. sp. multigermtubi. To date, little is known about the molecular mechanism of poplar (M. brunnea) interaction. In order to identify the proteins related to disease resistance and understand its molecular basis, the clone "NL895" (P. euramericana CL"NL895"), which is highly resistant to M. brunnea f. sp. multigermtubi, was used in this study. We used two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) to identify the proteins in poplar leaves that were differentially expressed in response to black spot disease pathogen, M. brunnea f. sp. multigermtubi. Proteins extracted from poplar leaves at 0, 12, 24, 48, and 72 h after pathogen-inoculation were separated by 2-DE, About 500 reproducible protein spots were detected, of which 40 protein spots displayed differential expression in levels and were subjected to Matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) followed by database searching. According to the function, the identified proteins were sorted into five categories, that is, protein synthesis, metabolism, defense response and unclassified proteins.展开更多
Inspired by the design philosophy of information metasurfaces based on the digital coding concept,a planar 4-bit reconfigurable antenna array with low profile of 0.15λ0(whereλ0is the free-space wavelength)is present...Inspired by the design philosophy of information metasurfaces based on the digital coding concept,a planar 4-bit reconfigurable antenna array with low profile of 0.15λ0(whereλ0is the free-space wavelength)is presented.The array is based on a digital coding radiation element consisting of a 1-bit magnetoelectric(ME)dipole and a miniaturized reflection-type phase shifter(RTPS).The proposed 1-bit ME dipole can provide two digital states of"0"and"1"(with 0°and 180°phase responses)over a wide frequency band by individually exciting its two symmetrical feeding ports.The designed RTPS is able to realize a relative phase shift of 173°.By digitally quantizing its phase in the range of 157.5°,additional eight digital states at intervals of 22.5°are obtained.To achieve low sidelobe levels,a 1:16 power divider based on the Taylor line source method is employed to feed the array,A prototype of the proposed 4-bit antenna array has been fabricated and tested,and the experimental results are in good agreement with the simulations.Scanning beams within a±45°range were measured with a maximum realized gain of 13.4 dBi at12 GHz.The sidelobe and cross-polarization levels are below-14.3 and-23.0 dB,respectively.Furthermore,the beam pointing error is within 0.8°,and the 3 dB gain bandwidth of the broadside beam is 25%.Due to its outstanding performance,the array holds potential for significant applications in radar and wireless communication systems.展开更多
Interference with quorum sensing(QS)represents an antivirulence strategy with a significant promise for the treatment of bacterial infections and a new approach to restoring antibiotic tolerance.Over the past two deca...Interference with quorum sensing(QS)represents an antivirulence strategy with a significant promise for the treatment of bacterial infections and a new approach to restoring antibiotic tolerance.Over the past two decades,a novel series of studies have reported that quorum quenching approaches and the discovery of quorum sensing inhibitors(QSIs)have a strong impact on the discovery of anti-infective drugs against various types of bacteria.The discovery of QSI was demonstrated to be an appropriate strategy to expand the anti-infective therapeutic approaches to complement classical antibiotics and antimicrobial agents.For the discovery of QSIs,diverse approaches exist and develop in-step with the scale of screening as well as specific QS systems.This review highlights the latest findings in strategies and methodologies for QSI screening,involving activity-based screening with bioassays,chemical methods to seek bacterial QS pathways for QSI discovery,virtual screening for QSI screening,and other potential tools for interpreting QS signaling,which are innovative routes for future efforts to discover additional QSIs to combat bacterial infections.展开更多
In current wireless communication and electronic systems,digital signals and electromagnetic(EM)radiation are processed by different modules.Here,we propose a mechanism to fuse the modulation of digital signals and th...In current wireless communication and electronic systems,digital signals and electromagnetic(EM)radiation are processed by different modules.Here,we propose a mechanism to fuse the modulation of digital signals and the manipulation of EM radiation on a single programmable metasurface(PM).The PM consists of massive subwavelength-scale digital coding elements.A set of digital states of all elements forms simultaneous digital information roles for modulation and the wave-control sequence code of the PM.By designing digital coding sequences in the spatial and temporal domains,the digital information and farfield patterns of the PM can be programmed simultaneously and instantly in desired ways.For the experimental demonstration of the mechanism,we present a programmable wireless communication system.The same system can realize transmissions of digital information in single-channel modes with beamsteerable capability and multichannel modes with multiple independent information.The measured results show the excellent performance of the programmable system.This work provides excellent prospects for applications in fifth-or sixth-generation wireless communications and modern intelligent platforms for unmanned aircrafts and vehicles.展开更多
The VirE2-interaction protein 1(VIP1)serves as a regulator of mitogen-activated protein kinase 3(MPK3)-mediated stress gene modulation under biotic stress,which in turn activates the MPK3 pathway in Arabidopsis.The mo...The VirE2-interaction protein 1(VIP1)serves as a regulator of mitogen-activated protein kinase 3(MPK3)-mediated stress gene modulation under biotic stress,which in turn activates the MPK3 pathway in Arabidopsis.The mode of action of the VIP1 protein in Populus in response to biotic stress remains unknown.In this study,we cloned the full-length cDNA of the PtVIP1 gene from Populus trichocarpa(accession number of GenBank:KY793105).The VIP1 protein harboured a conserved bZIP(basic leucine zipper)domain located in the C-terminus.The VIP1 subcellular localization assay indicated that the VIP1 protein was present in the cytoplasm and nucleus under normal conditions,and that an increase in the amount of the protein in the nucleus occurred after treatment with flg22,the elicitor-active epitope of flagellin which triggers the innate immune response in plants.Transgenic Populus plants overexpressing VIP1 genes(PtVIP1 of Populus;or AtVIP1 of Arabidopsis,as positive control)were generated to investigate the role of VIP1 in vivo.The expression of poplar pathogenesis-related protein 1(PR1)genes was upregulated in transgenic-PtVIP1 or AtVIP1 poplar plants.The transgenic poplar plants overexpressing PtVIP1 or AtVIP1 also showed enhanced resistance to Brenneria salicis infection.These results suggest that the VIP1 protein accumulates in the nucleus in response to biotic stress,and that the pathogen resistance of transgenic VIP1 poplar may be associated with the induced expression of PR1 genes in response to pathogen challenge.展开更多
Recent advances of artificial structured materials, including photonic crystals and metamaterials, have greatly broadened the functionalities of terahertz (THz) devices and provided more degree of freedom in manipul...Recent advances of artificial structured materials, including photonic crystals and metamaterials, have greatly broadened the functionalities of terahertz (THz) devices and provided more degree of freedom in manipulating THz waves beyond traditional constraints. These materials are usually constituted by periodic or aperiodic sub-wavelength elements, showing significant electromagnetic responses during the wave matter interaction, thus enabling the modulation of amplitude, phase, or propagation direction of incident waves as a result. So far, a variety of applications have been proposed and experimentally validated, such as the THz filters, polarizers, modulators, and biosensors with the advantages of ultrathin profile, easy integration, and simple geometry. By incorporating novel materials like graphene, vanadium dioxide, and liquid crystals in the element design, we are allowed to adjust the characteristics of the THz radiation dynamically, which brings additional flexibilities toward the construction of novel THz functional devices.展开更多
In order to acquire the degradation state of rolling bearings and achieve predictive maintenance,this paper proposed a novel Remaining Useful Life(RUL)prediction of rolling bearings based on Long Short Term Memory(LST...In order to acquire the degradation state of rolling bearings and achieve predictive maintenance,this paper proposed a novel Remaining Useful Life(RUL)prediction of rolling bearings based on Long Short Term Memory(LSTM)neural network.The method is divided into two parts:feature extraction and RUL prediction.Firstly,a large number of features are extracted from the original vibration signal.After correlation analysis,the features that can better reflect the degradation trend of rolling bearings are selected as input of prediction model.In the part of RUL prediction,LSTM that making full use of the network’s memory in time is used to improve the accuracy of RUL prediction.The proposed method is validated by life cycle experimental data of bearings,and the RUL prediction results of LSTM model are compared with Support Vector Regression(SVR)and Light Gradient Boosting Machine(LightGBM)models respectively.The results show that the proposed method is more suitable for RUL prediction of rolling bearings.展开更多
Construction of C-F bonds is a direct and efficient method for introducing fluorine into pharmaceuticals,agrochemicals,and materials.Strategies such as nucleophilic,electrophilic,radical,and transition-metal catalyzed...Construction of C-F bonds is a direct and efficient method for introducing fluorine into pharmaceuticals,agrochemicals,and materials.Strategies such as nucleophilic,electrophilic,radical,and transition-metal catalyzed fluorination have been developed to meet the demand of diverse C-F bond formation.Among them,radical fluorination has been witnessed with substantial advancement in a recent decade.Herein,we reviewed methods for formation of C-F bonds with carbon-centered radicals as key intermediates,especially in recent five years.We introduce in the paper with different fluorinating reagents,strategies for radical generation,and application in late-stage functionalization and synthesis of PET tracers.We also indicate the current limitations and propose the direction of the field for the future development.展开更多
Silicon is one of the main gangue components in iron ore,usually in the form of quartz and olivine.Numerous studies have shown that SiO_(2) has a two-sided effect on the consolidation of pellets during high-temperatur...Silicon is one of the main gangue components in iron ore,usually in the form of quartz and olivine.Numerous studies have shown that SiO_(2) has a two-sided effect on the consolidation of pellets during high-temperature oxidation roasting of magnetite.However,it is very difficult to capture the structural evolution and migration mechanisms during high-tem-perature roasting process by existing experimental methods.Therefore,the influence of SiO_(2) on the consolidation behavior of magnetite was studied through a series of roasting experiments and molecular dynamic simulation.The results show that the consolidation index and particle growth index decrease with the increase in SiO_(2) content in the particles.At 1573 K,the liquid phase promotes the recrystallization growth of hematite at high temperature.Molecular dynamic study shows that it is difficult for quartz SiO_(2) to form sintering neck with Fe_(2)O_(3).When the calcination temperature is higher than 1400 K,the Fe_(2)O_(3)-Fe_(2)SiO_(4) system produces a considerable sintering neck structure after relaxation.The atomic migration ability of Fe_(2)SiO_(4) is much higher than that of Fe_(2)O_(3).The higher atomic migration ability of Fe_(2)SiO_(4) is the main reason for the formation of the sintering neck.展开更多
Radio frequency(RF)energy harvester as an efficient tool for capturing and converting the flourishing ambient RF energy provides a promising solution for long-term powering the wireless sensor networks and the Interne...Radio frequency(RF)energy harvester as an efficient tool for capturing and converting the flourishing ambient RF energy provides a promising solution for long-term powering the wireless sensor networks and the Internet of things(IoTs).However,the actual distribution of the environmental RF signals is dynamically frequency-dependent due to the diverse wireless terminals only interacting with specified frequencies.To take full advantage of the RF energy carrying this characteristic,an intelligent RF energy harvester is in demand to automatically sense the frequency information of an incident signal and conduct the corresponding RF-to-direct current transformation process.Here,to the best of my knowledge,a frequency-self-adaptive RF harvester is first presented with the help of the shape-reconfigurable liquid metal,which can precisely identify and efficiently convert an arbitrary signal from the frequency span of 1.8 to 2.6 GHz.Companied with a microcontroller unit and a tensile system,the dynamic functionality of the entire system is comprehensively demonstrated,showing promising potential to significantly advance various fields,including sustainable IoT applications,green wearable technologies,and self-powered devices.展开更多
Developing a novel photothermal catalyst for efficient mineralization of volatile organic compounds(VOCs)is of great significance to control air pollution.Herein,for the first-time,a spinel Cu_(1.5)Mn_(1.5)O_(4)nanoma...Developing a novel photothermal catalyst for efficient mineralization of volatile organic compounds(VOCs)is of great significance to control air pollution.Herein,for the first-time,a spinel Cu_(1.5)Mn_(1.5)O_(4)nanomaterial with enhanced surface lattice oxygen activation was successfully obtained by a novel light-driven in situ reconstruction strategy from its precursor(CuMnO_(2))for efficient toluene mineralization.X-ray diffraction(XRD)and high-resolution transmission electron microscopy(HRTEM)analyses confirm that the CuMnO_(2)phase was converted into spinel Cu1.5Mn1.5O4 phase under full spectrum light irradiation.Ultraviolet–visible–near infrared ray(UV–vis–NIR)spectroscopy,X-ray photoelectron spectroscopy(XPS)analysis,and density functional theory(DFT)calculations determine that the strong near-infrared absorption ability and low dissociation energy of oxygen bond in Cu_(1.5)Mn_(1.5)O_(4)are beneficial to its surface lattice oxygen activation.Furthermore,O2-temperature programmed desorption(TPD)and in situ diffuse reflectance infrared transform spectroscopy(DRIFTS)further indicate that the surface lattice oxygen of the Cu_(1.5)Mn_(1.5)O_(4)is easily activated under light irradiation,which can promote ring opening of toluene.This research endows a new design of photothermal nanomaterial with enhanced lattice oxygen activation for deep oxidation of VOCs.展开更多
Reconfigurable intelligent surface(RIS)is a two-dimensional artificial material with reconfigurable electromagnetic characteristics.Since the phase,amplitude,polarization,and frequency responses of electromagnetic wav...Reconfigurable intelligent surface(RIS)is a two-dimensional artificial material with reconfigurable electromagnetic characteristics.Since the phase,amplitude,polarization,and frequency responses of electromagnetic waves at each element can be independently adjusted by changing the biasing signals of tunable devices embedded in the RIS elements,it is possible to reshape the wavefront of the spatial electromagnetic waves in a programmable way.展开更多
基金supported by the Construction S&T Project of Department of Transportation of Sichuan Province(Grant No.2023A02,No.2024A04,No.2020A01)the Sichuan Science and Technology Program(Grant No.2022YFG0141)+3 种基金the Research Project of Sichuan Highway Planning,Survey,Design,and Research Institute Ltd.(Grant No.KYXM2021000049,No.KYXM2022000038,No.KYXM202300056)the National Natural Science Foundation of China(41630640)the National Science Foundation of Innovation Research Group(41521002)the National Natural Science Foundation of China(41790445).
基金supported by the Construction S&T Project of Department of Transportation of Sichuan Province (Grant No.2023A02,No.2024A04,No.2020A01)the Sichuan Science and Technology Program (Grant No.2022YFG0141)+3 种基金the Research Project of Sichuan Highway Planning,Survey,Design,and Research Institute Ltd. (Grant No.KYXM2021000049,KYXM2022000038,No.KYXM2023000056)the National Natural Science Foundation of China (41630640)the National Natural Science Foundation of China (41790445)the National Science Foundation of Innovation Research Group (41521002)。
基金supported by the Construction S&T Project of Department of Transportation of Sichuan Province(Grant No.2023A02,No.2024A04,No.2020A01)the Sichuan Science and Technology Program(Grant No.2022YFG0141)+3 种基金the Research Project of Sichuan Highway Planning,Survey,Design,and Research Institute Ltd.(Grant No.KYXM2021000049,No.KYXM2022000038,No.KYXM2023000056)the National Natural Science Foundation of China(41630640)the National Science Foundation of Innovation Research Group(41521002)the National Natural Science Foundation of China(41790445).
文摘A wide range of terrain features and landforms,which are exemplified by intricate geological formations and diverse rock compositions,are found in the western mountainous regions of China.These areas frequently encounter geological disasters.As one of the natural disasters,landslides lead to considerable loss of human life and property.Considering mitigation of the losses caused by landslide disasters,a necessary measure for disaster prevention and mitigation involves conducting detailed investigations and monitoring of landslides,which is also the cornerstone of landslide warning.This study compares and analyzes the feasibility of the magnetotelluric detection method for landslides using the results of engineering geological surveys and landslide monitoring.The study aims to address the scientific problem of the validity of using magnetotelluric methods to detect landslide development processes.The Tangjiawan landslide signal on the left side of the K94+000~K94+145 section of the Wenma Expressway is analyzed by employing engineering geological survey,magnetotelluric detection,landslide monitoring,landslide analysis,and other methods.Analysis results provide the static electrical characteristics of lithology,structure,and groundwater,as well as the dynamic electrical characteristics of landslide development.This study focuses on analyzing the relationship between the methods of magnetotelluric detection and engineering geological surveys and the results of landslide monitoring.The workflow and methods for data collection,processing,inversion,interpretation,and analysis using the magnetotelluric method to detect the dynamic development process of landslides are presented in the conclusion.Preliminary conclusions indicate a strong correlation between the dynamic changes in magnetotelluric wave impedance with the surface displacement of landslides and the dynamic changes in groundwater.The use of the magnetotelluric method for landslide detection and monitoring is a feasible example.The research results can offer certain technical references for the detection and monitoring of landslides using magnetotelluric methods and also provide references and guidance for the selection of diversified landslide monitoring methods in the future.
基金financially supported by Research and application of corn straw forage and beef cattle high-efficiency and quality production technology (Provincial Education Science and Technology Innovation Project) (GSSYLXM-02)the Gansu beef cattle quality fattening project (GSAXMLZ-2021-01)+1 种基金the Application of Pingliang Red Bull Planting and Breeding Combined with High-efficiency Circular Production System Construction Technology Application (2020C-08)the local funding (GSSLCSX-2020-1)。
文摘Background Many countries have already banned the use of antibiotics in animal husbandry,making it extremely difficult to maintain animal health in livestock breeding.In the livestock industry,there is an urgent need to develop alternatives to antibiotics which will not lead to drug resistance on prolonged use.In this study,eighteen castrated bulls were randomly divided into two groups.The control group(CK)was fed the basal diet,while the antimicrobial peptide group(AP)was fed the basal diet supplemented with 8 g of antimicrobial peptides in the basal diet for the experimental period of 270 d.They were then slaughtered to measure production performance,and the ruminal contents were isolated for metagenomic and metabolome sequencing analysis.Result The results showed that antimicrobial peptides could improve the daily weight,carcass weight,and net meat weight of the experimental animals.Additionally,the rumen papillae diameter and the micropapillary density in the AP were significantly greater than those in the CK.Furthermore,the determination of digestive enzymes and fermentation parameters showed that the contents of protease,xylanase,andβ-glucoside in the AP were greater than those in the CK.However,lipase content in the CK was greater than that in the AP.Moreover,the content of acetate,propionate,butyrate,and valerate was found to be greater in AP than those in CK.The metagenomic analysis annotated 1993 differential microorganisms at the species level.The KEGG enrichment of these microorganisms revealed that the enrichment of drug resistance-related pathways was dramatically decreased in the AP,whereas the enrichment of immune-related pathways was significantly increased.There was also a significant reduction in the types of viruses in the AP.187 probiotics with significant differences were found,135 of which were higher in AP than in CK.It was also found that the antimicrobial mechanism of the antimicrobial peptides was quite specific.Seven low-abundance microorganisms(Acinetobactersp.Ac1271,Aequorivita soesokkakensis,Bacillus lacisalsi,Haloferax larsenii,Lysinibacillussp.3DF0063,Parabacteroidessp.217,Streptomycessp.So13.3)were found to regulate growth performance of the bull negatively.Metabolome analysis identified 45 differentially differential metabolites that significantly different between the CK and the AP groups.Seven upregulated metabolites(4-pyridoxic acid,Ala-Phe,3-ureidopropionate,hippuric acid,terephthalic acid,L-alanine,uridine 5-monophosphate)improve the growth performance of the experimental animals.To detect the interactions between the rumen microbiome and metabolism,we associated the rumen microbiome with the metabolome and found that negative regulation between the above 7 microorganisms and 7 metabolites.Conclusions This study shows that antimicrobial peptides can improve the growth performance of animals while resisting viruses and harmful bacteria and are expected to become healthy alternatives to antibiotics.We demonstrated a new antimicrobial peptides pharmacological model.We demonstrated low-abundance microorganisms may play a role by regulating the content of metabolites.
基金supported in part by the National Science Foundation(NSFC)for Distinguished Young Scholars of China with Grant 61625106the National Natural Science Foundation of China under Grant 61531011
文摘Metasurfaces have drawn significant attentions due to their superior capability in tailoring electromagnetic waves with a wide frequency range, from microwave to visible light. Recently, programmable metasurfaces have demonstrated the ability of manipulating the amplitude or phase of electromagnetic waves in a programmable manner in real time, which renders them especially appealing in the applications of wireless communications. In this paper, we present the fundamental principle of applying programmable metasurface as transmitter for wireless communications. Then, we establish a prototype system of metasurface-based transmitter to conduct several experiments and measurements over the air, which practically demonstrate the feasibility of using programmable metasurfaces in future communication systems. By exploiting the dynamically controllable property of programmable metasurface, the design, implementation and experimental evaluation of the proposed metasurface-based wireless communication system are presented with the prototype, which realizes single carrier quadrature phase shift keying(QPSK) transmission over the air. In the developed prototype, the phase of the reflected electromagnetic wave of programma-ble metasurface is directly manipulated in real time according to the baseband control signal, which achieves 2.048 Mbps data transfer rate with video streaming transmission over the air. In addition, experimental result is provided to compare the performance of the proposed metasurface-based architecture against the conventional one. With the slight increase of the transmit power by 5 dB, the same bit error rate(BER) performance can be achieved as the conventional system in the absence of channel coding. Such a result is encouraging considering that the metasurface-based system has the advantages of low hardware cost and simple structure, thus leading to a promising new architecture for wireless communications.
基金This work was supported by the National Natural Science Foundation of China (No. 30230300).
文摘Black spot disease in poplar is a disease of the leaf caused by fungus. The major pathogen is Marssonina brunnea f. sp. multigermtubi. To date, little is known about the molecular mechanism of poplar (M. brunnea) interaction. In order to identify the proteins related to disease resistance and understand its molecular basis, the clone "NL895" (P. euramericana CL"NL895"), which is highly resistant to M. brunnea f. sp. multigermtubi, was used in this study. We used two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) to identify the proteins in poplar leaves that were differentially expressed in response to black spot disease pathogen, M. brunnea f. sp. multigermtubi. Proteins extracted from poplar leaves at 0, 12, 24, 48, and 72 h after pathogen-inoculation were separated by 2-DE, About 500 reproducible protein spots were detected, of which 40 protein spots displayed differential expression in levels and were subjected to Matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) followed by database searching. According to the function, the identified proteins were sorted into five categories, that is, protein synthesis, metabolism, defense response and unclassified proteins.
基金supported in part by the National Key Research and Development Program of China(2017YFA0700201,2017YFA0700202,and 2017YFA0700203)the National Natural Science Foundation of China(61631007,61571117,61138001,61371035,61722106,61731010,11227904,and 62171124)+1 种基金the 111 Project(111-2-05)the Scientific Research Foundation of Graduate School of Southeast University(YBYP2119)。
文摘Inspired by the design philosophy of information metasurfaces based on the digital coding concept,a planar 4-bit reconfigurable antenna array with low profile of 0.15λ0(whereλ0is the free-space wavelength)is presented.The array is based on a digital coding radiation element consisting of a 1-bit magnetoelectric(ME)dipole and a miniaturized reflection-type phase shifter(RTPS).The proposed 1-bit ME dipole can provide two digital states of"0"and"1"(with 0°and 180°phase responses)over a wide frequency band by individually exciting its two symmetrical feeding ports.The designed RTPS is able to realize a relative phase shift of 173°.By digitally quantizing its phase in the range of 157.5°,additional eight digital states at intervals of 22.5°are obtained.To achieve low sidelobe levels,a 1:16 power divider based on the Taylor line source method is employed to feed the array,A prototype of the proposed 4-bit antenna array has been fabricated and tested,and the experimental results are in good agreement with the simulations.Scanning beams within a±45°range were measured with a maximum realized gain of 13.4 dBi at12 GHz.The sidelobe and cross-polarization levels are below-14.3 and-23.0 dB,respectively.Furthermore,the beam pointing error is within 0.8°,and the 3 dB gain bandwidth of the broadside beam is 25%.Due to its outstanding performance,the array holds potential for significant applications in radar and wireless communication systems.
基金funded by the National Natural Science Foundation of China (Grant No.: 81803812)
文摘Interference with quorum sensing(QS)represents an antivirulence strategy with a significant promise for the treatment of bacterial infections and a new approach to restoring antibiotic tolerance.Over the past two decades,a novel series of studies have reported that quorum quenching approaches and the discovery of quorum sensing inhibitors(QSIs)have a strong impact on the discovery of anti-infective drugs against various types of bacteria.The discovery of QSI was demonstrated to be an appropriate strategy to expand the anti-infective therapeutic approaches to complement classical antibiotics and antimicrobial agents.For the discovery of QSIs,diverse approaches exist and develop in-step with the scale of screening as well as specific QS systems.This review highlights the latest findings in strategies and methodologies for QSI screening,involving activity-based screening with bioassays,chemical methods to seek bacterial QS pathways for QSI discovery,virtual screening for QSI screening,and other potential tools for interpreting QS signaling,which are innovative routes for future efforts to discover additional QSIs to combat bacterial infections.
基金supported by the Fund for International Cooperation and Exchange of National Natural Science Foundation of China(61761136007)the National Key Research and Development Program of China(2017YFA0700201,2017YFA0700202,and 2017YFA0700203)+3 种基金the National Natural Science Foundation of China(6217010363,61631007,61571117,61501112,61501117,61871109,61522106,61731010,61735010,61722106,61701107,and 61701108)the Natural Science Foundation of Jiangsu Province(BK20211161)the 111 Project(111-2-05)ZhiShan Young Scholar Program of Southeast University.
文摘In current wireless communication and electronic systems,digital signals and electromagnetic(EM)radiation are processed by different modules.Here,we propose a mechanism to fuse the modulation of digital signals and the manipulation of EM radiation on a single programmable metasurface(PM).The PM consists of massive subwavelength-scale digital coding elements.A set of digital states of all elements forms simultaneous digital information roles for modulation and the wave-control sequence code of the PM.By designing digital coding sequences in the spatial and temporal domains,the digital information and farfield patterns of the PM can be programmed simultaneously and instantly in desired ways.For the experimental demonstration of the mechanism,we present a programmable wireless communication system.The same system can realize transmissions of digital information in single-channel modes with beamsteerable capability and multichannel modes with multiple independent information.The measured results show the excellent performance of the programmable system.This work provides excellent prospects for applications in fifth-or sixth-generation wireless communications and modern intelligent platforms for unmanned aircrafts and vehicles.
基金supported by the National Natural Science Foundation of China(Grant No.31570639)the Distinguished Young Scholars Fund of Nanjing Forestry University,the Priority Academic Program Development of Nanjing Forestry University the Poplar Germplasm Nursery Project(Jiangsu Provincial Platform for Conservation and Utilizations for Agricultural Germplasm)
文摘The VirE2-interaction protein 1(VIP1)serves as a regulator of mitogen-activated protein kinase 3(MPK3)-mediated stress gene modulation under biotic stress,which in turn activates the MPK3 pathway in Arabidopsis.The mode of action of the VIP1 protein in Populus in response to biotic stress remains unknown.In this study,we cloned the full-length cDNA of the PtVIP1 gene from Populus trichocarpa(accession number of GenBank:KY793105).The VIP1 protein harboured a conserved bZIP(basic leucine zipper)domain located in the C-terminus.The VIP1 subcellular localization assay indicated that the VIP1 protein was present in the cytoplasm and nucleus under normal conditions,and that an increase in the amount of the protein in the nucleus occurred after treatment with flg22,the elicitor-active epitope of flagellin which triggers the innate immune response in plants.Transgenic Populus plants overexpressing VIP1 genes(PtVIP1 of Populus;or AtVIP1 of Arabidopsis,as positive control)were generated to investigate the role of VIP1 in vivo.The expression of poplar pathogenesis-related protein 1(PR1)genes was upregulated in transgenic-PtVIP1 or AtVIP1 poplar plants.The transgenic poplar plants overexpressing PtVIP1 or AtVIP1 also showed enhanced resistance to Brenneria salicis infection.These results suggest that the VIP1 protein accumulates in the nucleus in response to biotic stress,and that the pathogen resistance of transgenic VIP1 poplar may be associated with the induced expression of PR1 genes in response to pathogen challenge.
文摘Recent advances of artificial structured materials, including photonic crystals and metamaterials, have greatly broadened the functionalities of terahertz (THz) devices and provided more degree of freedom in manipulating THz waves beyond traditional constraints. These materials are usually constituted by periodic or aperiodic sub-wavelength elements, showing significant electromagnetic responses during the wave matter interaction, thus enabling the modulation of amplitude, phase, or propagation direction of incident waves as a result. So far, a variety of applications have been proposed and experimentally validated, such as the THz filters, polarizers, modulators, and biosensors with the advantages of ultrathin profile, easy integration, and simple geometry. By incorporating novel materials like graphene, vanadium dioxide, and liquid crystals in the element design, we are allowed to adjust the characteristics of the THz radiation dynamically, which brings additional flexibilities toward the construction of novel THz functional devices.
基金This work is supported by the National Nature Science Foundation of China(No.51875100).The authors would like to thank anonymous reviewers and the associate editor,whose constructive comments help improve the presentation of this work.
文摘In order to acquire the degradation state of rolling bearings and achieve predictive maintenance,this paper proposed a novel Remaining Useful Life(RUL)prediction of rolling bearings based on Long Short Term Memory(LSTM)neural network.The method is divided into two parts:feature extraction and RUL prediction.Firstly,a large number of features are extracted from the original vibration signal.After correlation analysis,the features that can better reflect the degradation trend of rolling bearings are selected as input of prediction model.In the part of RUL prediction,LSTM that making full use of the network’s memory in time is used to improve the accuracy of RUL prediction.The proposed method is validated by life cycle experimental data of bearings,and the RUL prediction results of LSTM model are compared with Support Vector Regression(SVR)and Light Gradient Boosting Machine(LightGBM)models respectively.The results show that the proposed method is more suitable for RUL prediction of rolling bearings.
基金the National Natural Science Foundation of China(22301224)Wuhan Science and Technology Project(2023020201020273),and Wuhan University for financial support.We thank Prof.Wen-Bo Liu(Wuhan University)for proof reading.
文摘Construction of C-F bonds is a direct and efficient method for introducing fluorine into pharmaceuticals,agrochemicals,and materials.Strategies such as nucleophilic,electrophilic,radical,and transition-metal catalyzed fluorination have been developed to meet the demand of diverse C-F bond formation.Among them,radical fluorination has been witnessed with substantial advancement in a recent decade.Herein,we reviewed methods for formation of C-F bonds with carbon-centered radicals as key intermediates,especially in recent five years.We introduce in the paper with different fluorinating reagents,strategies for radical generation,and application in late-stage functionalization and synthesis of PET tracers.We also indicate the current limitations and propose the direction of the field for the future development.
基金The authors would like to thank the National Natural Science Foundation of China(52204335)for its financial assistance.
文摘Silicon is one of the main gangue components in iron ore,usually in the form of quartz and olivine.Numerous studies have shown that SiO_(2) has a two-sided effect on the consolidation of pellets during high-temperature oxidation roasting of magnetite.However,it is very difficult to capture the structural evolution and migration mechanisms during high-tem-perature roasting process by existing experimental methods.Therefore,the influence of SiO_(2) on the consolidation behavior of magnetite was studied through a series of roasting experiments and molecular dynamic simulation.The results show that the consolidation index and particle growth index decrease with the increase in SiO_(2) content in the particles.At 1573 K,the liquid phase promotes the recrystallization growth of hematite at high temperature.Molecular dynamic study shows that it is difficult for quartz SiO_(2) to form sintering neck with Fe_(2)O_(3).When the calcination temperature is higher than 1400 K,the Fe_(2)O_(3)-Fe_(2)SiO_(4) system produces a considerable sintering neck structure after relaxation.The atomic migration ability of Fe_(2)SiO_(4) is much higher than that of Fe_(2)O_(3).The higher atomic migration ability of Fe_(2)SiO_(4) is the main reason for the formation of the sintering neck.
基金This work was supported in part by the National Natural Science Foundation of China(Grant No.62101394)the National Science Fund for Distinguished Young Scholars(Grant No.62225108)+1 种基金the Foundation from Guangxi Key Laboratory of Optoelectronic Information Processing(Grant No.GD21203)the Beijing Nova Program(Grant No.2304842874).
文摘Radio frequency(RF)energy harvester as an efficient tool for capturing and converting the flourishing ambient RF energy provides a promising solution for long-term powering the wireless sensor networks and the Internet of things(IoTs).However,the actual distribution of the environmental RF signals is dynamically frequency-dependent due to the diverse wireless terminals only interacting with specified frequencies.To take full advantage of the RF energy carrying this characteristic,an intelligent RF energy harvester is in demand to automatically sense the frequency information of an incident signal and conduct the corresponding RF-to-direct current transformation process.Here,to the best of my knowledge,a frequency-self-adaptive RF harvester is first presented with the help of the shape-reconfigurable liquid metal,which can precisely identify and efficiently convert an arbitrary signal from the frequency span of 1.8 to 2.6 GHz.Companied with a microcontroller unit and a tensile system,the dynamic functionality of the entire system is comprehensively demonstrated,showing promising potential to significantly advance various fields,including sustainable IoT applications,green wearable technologies,and self-powered devices.
基金supported by Science and Technology Planning Project of Shenzhen Municipality(No.JCYJ20200109150225155)the National Natural Science Foundation of China(NSFC,No.92163125).
文摘Developing a novel photothermal catalyst for efficient mineralization of volatile organic compounds(VOCs)is of great significance to control air pollution.Herein,for the first-time,a spinel Cu_(1.5)Mn_(1.5)O_(4)nanomaterial with enhanced surface lattice oxygen activation was successfully obtained by a novel light-driven in situ reconstruction strategy from its precursor(CuMnO_(2))for efficient toluene mineralization.X-ray diffraction(XRD)and high-resolution transmission electron microscopy(HRTEM)analyses confirm that the CuMnO_(2)phase was converted into spinel Cu1.5Mn1.5O4 phase under full spectrum light irradiation.Ultraviolet–visible–near infrared ray(UV–vis–NIR)spectroscopy,X-ray photoelectron spectroscopy(XPS)analysis,and density functional theory(DFT)calculations determine that the strong near-infrared absorption ability and low dissociation energy of oxygen bond in Cu_(1.5)Mn_(1.5)O_(4)are beneficial to its surface lattice oxygen activation.Furthermore,O2-temperature programmed desorption(TPD)and in situ diffuse reflectance infrared transform spectroscopy(DRIFTS)further indicate that the surface lattice oxygen of the Cu_(1.5)Mn_(1.5)O_(4)is easily activated under light irradiation,which can promote ring opening of toluene.This research endows a new design of photothermal nanomaterial with enhanced lattice oxygen activation for deep oxidation of VOCs.
文摘Reconfigurable intelligent surface(RIS)is a two-dimensional artificial material with reconfigurable electromagnetic characteristics.Since the phase,amplitude,polarization,and frequency responses of electromagnetic waves at each element can be independently adjusted by changing the biasing signals of tunable devices embedded in the RIS elements,it is possible to reshape the wavefront of the spatial electromagnetic waves in a programmable way.