To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain ...To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain rates and the stress environments in depth significantly affect the mechanical characteristics of rocks.The sensitivity of strain rate to the dynamic strength and deformation modulus shows a negative correlation with depth,indicating that producing penetrative cracks in deep environments is more difficult when damage occurs.The dynamic strength shows a tendency to decrease and then increase slightly,but decreases sharply finally.Transmissivity demonstrates a similar trend as that of strength,whereas reflectivity indicates the opposite trend.Furthermore,two critical depths with high dynamically induced hazard possibilities based on the China Jinping Underground Laboratory(CJPL)were proposed for deep engineering.The first critical depth is 600-900 m,beyond which the sensitivity of rock dynamic characteristics to the strain rate and restraint of circumferential stress decrease,causing instability of surrounding rocks under axial stress condition.The second one lies at 1500-1800 m,where the wave impedance and dynamic strength of deep surrounding rocks drop sharply,and the dissipation energy presents a negative value.It suggests that the dynamic instability of deep surrounding rocks can be divided into dynamic load dominant and dynamic load induced types,depending on the second critical depth.展开更多
M-N-C(M=Fe,Co,Ni,etc.) catalyst owns high catalytic activity in the oxygen catalytic reaction which is the most likely to replace the Pt-based catalysts.But it is still a challenge to further increase the active site ...M-N-C(M=Fe,Co,Ni,etc.) catalyst owns high catalytic activity in the oxygen catalytic reaction which is the most likely to replace the Pt-based catalysts.But it is still a challenge to further increase the active site density.This article constructs the high-efficiency FeMn-N/S-C-1000 catalyst to realize ORR/OER bifunctional catalysis by hetero-atom,bimetal(Fe,Mn) doped simultaneously strategy.When evaluated it as bi-functional electro-catalysts,FeMn-N/S-C-1000 exhibits excellent catalytic activity(E_(1/2)=0.924 V,E_(j=10)=1.617 V) in alkaline media,outperforms conventional Pt/C,RuO_(2) and most non-precious-metal catalysts reported recently,Such outstanding performance is owing to N,S co-coordinated with metal to form multi-types of single atom,dual atom active sites to carry out bi-catalysis.Importantly,nitrite poison test provides the proof that the active sites of FeMn-N/S-C are more than that of single-atom catalysts to promote catalytic reactions directly.To better understand the local structure of Fe and Mn active sites,XAS and DFT were employed to reveal that FeMn-N_5/S-C site plays the key role during catalysis.Notably,the FeMn-N/S-C-1000 based low-temperature rechargeable flexible Zn-air also exhibits superior discharge performance and extraordinary durability at-40℃.This work will provide a new idea to design diatomic catalysts applied in low-temperature rechargeable batteries.展开更多
Human thioredoxin reductase (TrxR) system is associated with cancer cell growth and anti-apoptosis process. Effects of 1,2-bis(1,2-benzisoselenazolone-3(2H)-ketone)ethane (BBSKE),a novel TrxR inhibitor,were investigat...Human thioredoxin reductase (TrxR) system is associated with cancer cell growth and anti-apoptosis process. Effects of 1,2-bis(1,2-benzisoselenazolone-3(2H)-ketone)ethane (BBSKE),a novel TrxR inhibitor,were investigated on human leu-kemia cell lines HL-60 and K562. BBSKE treatment induced cell growth inhibition and apoptosis in both cell lines. Apoptosis induced by BBSKE is through Bcl-2/Bax and caspase-3 pathways. Ehrlich's ascites carcinoma-bearing mice were used to inves-tigate the anti-tumor effect of BBSKE in vivo. Tumor-bearing mice treated with BBSKE showed an increase of life span with a comparable effect to cyclophosphamide (CTX). These results suggest a potential usage of BBSKE as a therapeutic agent against non-solid tumors.展开更多
Novel cost-effective fuel cells have become more attractive due to the demands for rare and expensive platinum-group metal(PGM)catalysts for mitigating the sluggish kinetics of the oxygen reduction reaction(ORR).The h...Novel cost-effective fuel cells have become more attractive due to the demands for rare and expensive platinum-group metal(PGM)catalysts for mitigating the sluggish kinetics of the oxygen reduction reaction(ORR).The high-cost PGM catalyst in fuel cells can be replaced by earth-abundant transition-metalbased catalysts,that is,an Fe-N-C catalyst,which is considered one of the most promising alternatives.However,the performance of the Fe-N-C catalyst is hindered by the low catalytic activity and poor stability,which is caused by insufficient active sites and the lack of optimization of the triple-phase interface for mass transportation.Herein,a novel Fe–N–C catalyst consisting of mono-dispersed hierarchically mesoporous carbon sphere cores and single Fe atom-dispersed functional shells are presented.The synergistic effect between highly dispersed Fe-active sites and well-organized porous structures yields the combination of high ORR activity and high mass transfer performance.The half-wave potential of the catalyst in 0.1M H_(2)SO_(4) is 0.82 V versus reversible hydrogen electrode,and the peak power density is 812 mW·cm^(−2) in H_(2)–O_(2) fuel cells.Furthermore,it shows superior methanol tolerance,which is almost immune to methanol poisoning and generates up to 162 mW·cm^(−2) power density in direct methanol fuel cells.展开更多
Efficiently reducing carbon dioxide(CO_(2))into carbon chemicals and fuels is highly desirable due to the rapid growth of atmospheric CO_(2)ncentration.In prior work,we described a unique H/CO_(2)fuel cell driven by l...Efficiently reducing carbon dioxide(CO_(2))into carbon chemicals and fuels is highly desirable due to the rapid growth of atmospheric CO_(2)ncentration.In prior work,we described a unique H/CO_(2)fuel cell driven by low-valued waste heat,which not only CO_(2)nverts CO_(2)to methane(CH_(4))but also outputs electrical energy,yet the CO_(2)reduction rate needs to be urgently improved.Here,a novel Ru-RuOcatalyst with heterostructure was grafted on mesoporous carbon spheres by in situ partially reducing RuOinto ultrasmall Ru clusters(~1 nm),in which heteroatom-doped carbon spheres as a matrix with excellent CO_(2)nductivity and abundant pores can not only easily CO_(2)nfine the formation of Ru nanocluster but also are beneficial to the exposed active sites of Ru CO_(2)mplex and the mass transport.CO_(2)mpared to pure RuOnanoparticles supported on carbon spheres,our CO_(2)mposite catalyst boosts the CO_(2) nversion rate by more than 5-fold,reaching a value of 382.7μmol gcat.h-1at 170℃.Moreover,a decent output power density of 2.92 W mwas obtained from this H2/CO_(2)fuel cell using Ru-RuOembedded carbon spheres as a cathode catalyst.The Ru-RuOheterostructure can modify the adsorption energy of CO_(2)and induce the redistribution of charge density,thus boosting CO_(2)reduction significantly.This work not only offers an efficient catalyst for this novel H_(2)/CO_(2)fuel cell but also presents a facile method to prepare Ru nanoclusters.展开更多
For permanent magnet linear synchronous motor(PMLSM) working at trapezoidal speed for long time, high thrust brings high temperature rise, while low thrust limits dynamic performance. Thus, it is crucial to find a bal...For permanent magnet linear synchronous motor(PMLSM) working at trapezoidal speed for long time, high thrust brings high temperature rise, while low thrust limits dynamic performance. Thus, it is crucial to find a balance between temperature rise and dynamic performance. In this paper, a velocity planning model of the PMLSM at trapezoidal speed based on electromagnetic-fluid-thermal(EFT) field is proposed to obtain the optimal dynamic performance under temperature limitation. In this model, the winding loss is calculated considering the acceleration and deceleration time. The loss model is indirectly verified by the temperature rise experiment of an annular winding sample. The actual working conditions of the PMLSM are simulated by dynamic grid technology to research the influence of acceleration and deceleration on fluid flow in the air gap, and the variation rule of the thermal boundary condition is analyzed. Combined with the above conditions, the temperature rise of a coreless PMLSM(CPMLSM) under the rated working condition is calculated and analyzed in detail. Through this method and several iterations, the optimal dynamic performance under the temperature limitation is achieved. The result is verified by a comparison between simulation and prototype tests, which can help improve the dynamic performance.展开更多
We study the hard Lefschetz property on compact symplectic solvmanifolds,i.e.,compact quotients M=ΓG of a simply-connected solvable Lie group G by a latticeΓ,admitting a symplectic structure.
This paper proves that on any tamed closed almost complex four-manifold(M,J)whose dimension of J-anti-invariant cohomology is equal to the self-dual second Betti number minus one,there exists a new symplectic form com...This paper proves that on any tamed closed almost complex four-manifold(M,J)whose dimension of J-anti-invariant cohomology is equal to the self-dual second Betti number minus one,there exists a new symplectic form compatible with the given almost complex structure J.In particular,if the self-dual second Betti number is one,we give an affirmative answer to a question of Donaldson for tamed closed almost complex four-manifolds.Our approach is along the lines used by Buchdahl to give a unified proof of the Kodaira conjecture.展开更多
Catalytic C−H bond activation is one of the backbones of the chemical industry.Supported metal subnanoclusters consisting of a few atoms have shown attractive properties for heterogeneous catalysis.However,the creatio...Catalytic C−H bond activation is one of the backbones of the chemical industry.Supported metal subnanoclusters consisting of a few atoms have shown attractive properties for heterogeneous catalysis.However,the creation of such catalyst systems with high activity and excellent anti-sintering ability remains a grand challenge.Here,we report on alkali ion-promoted Pd subnanoclusters supported over defectiveγ-Al_(2)O_(3) nanosheets,which display exceptional catalytic activity for C−H bond activation in the benzene oxidation reaction.The presence of Pd subnanoclusters is verified by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy,X-ray absorption spectroscopy,and X-ray photoelectron spectroscopy.This catalyst shows excellent catalytic activity,with a turnover frequency of 280 h^(−1) and yield of 98%,in benzene oxidation reaction to give phenol under mild conditions.Moreover,the introduction of alkali ion greatly retards the diffusion and migration of metal atoms when tested under high-temperature sintering conditions.Density functional theory(DFT)calculations reveal that the addition of alkali ion to Pd nanoclusters can significantly impact the catalyst’s structure and electronic properties,and eventually promote its activity and stability.This work sheds light on the facile and scalable synthesis of highly active and stable catalyst systems with alkali additives for industrially important reactions.展开更多
For a compact symplectic manifold which is s-Lefschetz which is weaker than the decomposition for de hard Lefschetz property, we prove that the Lefschetz Rham cohomology also holds.
基金supported by the National Natural Science Foundation of China(No.U1965203).
文摘To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain rates and the stress environments in depth significantly affect the mechanical characteristics of rocks.The sensitivity of strain rate to the dynamic strength and deformation modulus shows a negative correlation with depth,indicating that producing penetrative cracks in deep environments is more difficult when damage occurs.The dynamic strength shows a tendency to decrease and then increase slightly,but decreases sharply finally.Transmissivity demonstrates a similar trend as that of strength,whereas reflectivity indicates the opposite trend.Furthermore,two critical depths with high dynamically induced hazard possibilities based on the China Jinping Underground Laboratory(CJPL)were proposed for deep engineering.The first critical depth is 600-900 m,beyond which the sensitivity of rock dynamic characteristics to the strain rate and restraint of circumferential stress decrease,causing instability of surrounding rocks under axial stress condition.The second one lies at 1500-1800 m,where the wave impedance and dynamic strength of deep surrounding rocks drop sharply,and the dissipation energy presents a negative value.It suggests that the dynamic instability of deep surrounding rocks can be divided into dynamic load dominant and dynamic load induced types,depending on the second critical depth.
基金supported by the National Natural Science Foundation of China(21603171)the Basic Research Foundation of Xi’an Jiaotong University(xjh012020027)。
文摘M-N-C(M=Fe,Co,Ni,etc.) catalyst owns high catalytic activity in the oxygen catalytic reaction which is the most likely to replace the Pt-based catalysts.But it is still a challenge to further increase the active site density.This article constructs the high-efficiency FeMn-N/S-C-1000 catalyst to realize ORR/OER bifunctional catalysis by hetero-atom,bimetal(Fe,Mn) doped simultaneously strategy.When evaluated it as bi-functional electro-catalysts,FeMn-N/S-C-1000 exhibits excellent catalytic activity(E_(1/2)=0.924 V,E_(j=10)=1.617 V) in alkaline media,outperforms conventional Pt/C,RuO_(2) and most non-precious-metal catalysts reported recently,Such outstanding performance is owing to N,S co-coordinated with metal to form multi-types of single atom,dual atom active sites to carry out bi-catalysis.Importantly,nitrite poison test provides the proof that the active sites of FeMn-N/S-C are more than that of single-atom catalysts to promote catalytic reactions directly.To better understand the local structure of Fe and Mn active sites,XAS and DFT were employed to reveal that FeMn-N_5/S-C site plays the key role during catalysis.Notably,the FeMn-N/S-C-1000 based low-temperature rechargeable flexible Zn-air also exhibits superior discharge performance and extraordinary durability at-40℃.This work will provide a new idea to design diatomic catalysts applied in low-temperature rechargeable batteries.
基金Project (No.30472036) supported by the National Natural Science Foundation of China
文摘Human thioredoxin reductase (TrxR) system is associated with cancer cell growth and anti-apoptosis process. Effects of 1,2-bis(1,2-benzisoselenazolone-3(2H)-ketone)ethane (BBSKE),a novel TrxR inhibitor,were investigated on human leu-kemia cell lines HL-60 and K562. BBSKE treatment induced cell growth inhibition and apoptosis in both cell lines. Apoptosis induced by BBSKE is through Bcl-2/Bax and caspase-3 pathways. Ehrlich's ascites carcinoma-bearing mice were used to inves-tigate the anti-tumor effect of BBSKE in vivo. Tumor-bearing mice treated with BBSKE showed an increase of life span with a comparable effect to cyclophosphamide (CTX). These results suggest a potential usage of BBSKE as a therapeutic agent against non-solid tumors.
基金We gratefully acknowledge support from the National Natural Science Foundation of China(Grant Nos.21905220,51772240,21503158,51425301,U1601214,21703184)the China Postdoctoral Science Foundation(2020M673408)+5 种基金the Key Research and Development Plan of Shaanxi Province,China(Grant No.2018ZDXM-GY-135)the Fundamental Research Funds for“Young Talent Support Plan”of Xi'an Jiaotong University(HG6J003)the“1000‐Plan program”of Shaanxi Province,the Promotion Program for Young and Middle-Aged Teacher in Science and Technology Research of Huaqiao University(ZQN-PY506)the Scientific Research Funds of Huaqiao University(17BS405)the State Key Laboratory for Mechanical Behavior of Materials(20192101)the Natural Science Foundation Committee of Jiangsu Province(BK20201190).
文摘Novel cost-effective fuel cells have become more attractive due to the demands for rare and expensive platinum-group metal(PGM)catalysts for mitigating the sluggish kinetics of the oxygen reduction reaction(ORR).The high-cost PGM catalyst in fuel cells can be replaced by earth-abundant transition-metalbased catalysts,that is,an Fe-N-C catalyst,which is considered one of the most promising alternatives.However,the performance of the Fe-N-C catalyst is hindered by the low catalytic activity and poor stability,which is caused by insufficient active sites and the lack of optimization of the triple-phase interface for mass transportation.Herein,a novel Fe–N–C catalyst consisting of mono-dispersed hierarchically mesoporous carbon sphere cores and single Fe atom-dispersed functional shells are presented.The synergistic effect between highly dispersed Fe-active sites and well-organized porous structures yields the combination of high ORR activity and high mass transfer performance.The half-wave potential of the catalyst in 0.1M H_(2)SO_(4) is 0.82 V versus reversible hydrogen electrode,and the peak power density is 812 mW·cm^(−2) in H_(2)–O_(2) fuel cells.Furthermore,it shows superior methanol tolerance,which is almost immune to methanol poisoning and generates up to 162 mW·cm^(−2) power density in direct methanol fuel cells.
基金financially supported by the Natural Science Foundation of Shaanxi Provincial(2021JQ-034)Chongqing University Key Laboratory of Micro/Nano Materials Engineering and Technology(KFJJ2012)by University Joint Project of Shaanxi Province(2021GXLH-Z-067)。
文摘Efficiently reducing carbon dioxide(CO_(2))into carbon chemicals and fuels is highly desirable due to the rapid growth of atmospheric CO_(2)ncentration.In prior work,we described a unique H/CO_(2)fuel cell driven by low-valued waste heat,which not only CO_(2)nverts CO_(2)to methane(CH_(4))but also outputs electrical energy,yet the CO_(2)reduction rate needs to be urgently improved.Here,a novel Ru-RuOcatalyst with heterostructure was grafted on mesoporous carbon spheres by in situ partially reducing RuOinto ultrasmall Ru clusters(~1 nm),in which heteroatom-doped carbon spheres as a matrix with excellent CO_(2)nductivity and abundant pores can not only easily CO_(2)nfine the formation of Ru nanocluster but also are beneficial to the exposed active sites of Ru CO_(2)mplex and the mass transport.CO_(2)mpared to pure RuOnanoparticles supported on carbon spheres,our CO_(2)mposite catalyst boosts the CO_(2) nversion rate by more than 5-fold,reaching a value of 382.7μmol gcat.h-1at 170℃.Moreover,a decent output power density of 2.92 W mwas obtained from this H2/CO_(2)fuel cell using Ru-RuOembedded carbon spheres as a cathode catalyst.The Ru-RuOheterostructure can modify the adsorption energy of CO_(2)and induce the redistribution of charge density,thus boosting CO_(2)reduction significantly.This work not only offers an efficient catalyst for this novel H_(2)/CO_(2)fuel cell but also presents a facile method to prepare Ru nanoclusters.
基金supported in part by the National Natural Science Foundation of China under Grant 52022040in part by the Postgraduate Research&Practice Innovation Program of NUAA。
文摘For permanent magnet linear synchronous motor(PMLSM) working at trapezoidal speed for long time, high thrust brings high temperature rise, while low thrust limits dynamic performance. Thus, it is crucial to find a balance between temperature rise and dynamic performance. In this paper, a velocity planning model of the PMLSM at trapezoidal speed based on electromagnetic-fluid-thermal(EFT) field is proposed to obtain the optimal dynamic performance under temperature limitation. In this model, the winding loss is calculated considering the acceleration and deceleration time. The loss model is indirectly verified by the temperature rise experiment of an annular winding sample. The actual working conditions of the PMLSM are simulated by dynamic grid technology to research the influence of acceleration and deceleration on fluid flow in the air gap, and the variation rule of the thermal boundary condition is analyzed. Combined with the above conditions, the temperature rise of a coreless PMLSM(CPMLSM) under the rated working condition is calculated and analyzed in detail. Through this method and several iterations, the optimal dynamic performance under the temperature limitation is achieved. The result is verified by a comparison between simulation and prototype tests, which can help improve the dynamic performance.
基金Supported by PRC grant NSFC(Grant No.11701226)(Tan)Natural Science Foundation of Jiangsu Province(Grant No.BK20170519)(Tan)+1 种基金Project PRIN“Variet reali e complesse:geometria,topologia e analisi armonica”GNSAGA of INdAM(Tomassini)。
文摘We study the hard Lefschetz property on compact symplectic solvmanifolds,i.e.,compact quotients M=ΓG of a simply-connected solvable Lie group G by a latticeΓ,admitting a symplectic structure.
基金supported by PRC Grant NSFC 11701226(Tan),11371309,11771377(Wang),11426195(Zhou),11471145(Zhu)Natural Science Foundation of Jiangsu Province BK20170519(Tan)+1 种基金University Science Research Project of Jiangsu Province 15KJB110024(Zhou)Foundation of Yangzhou University 2015CXJ003(Zhou).
文摘This paper proves that on any tamed closed almost complex four-manifold(M,J)whose dimension of J-anti-invariant cohomology is equal to the self-dual second Betti number minus one,there exists a new symplectic form compatible with the given almost complex structure J.In particular,if the self-dual second Betti number is one,we give an affirmative answer to a question of Donaldson for tamed closed almost complex four-manifolds.Our approach is along the lines used by Buchdahl to give a unified proof of the Kodaira conjecture.
基金support of this work by the China Postdoctoral Science Foundation(Nos.2019M661247 and 2020T130091)Postdoctoral Science Foundation of Heilongjiang Province(No.LBH-Z19047)+2 种基金Scientific Research Foundation for Returned Scholars of Heilongjiang Province of China(No.719900091)Heilongjiang Touyan Innovation Team Program,the National Key Technology Research and Development Program of China(No.2017YFA0403403)the National Natural Science Foundation of China(No.21872131)。
文摘Catalytic C−H bond activation is one of the backbones of the chemical industry.Supported metal subnanoclusters consisting of a few atoms have shown attractive properties for heterogeneous catalysis.However,the creation of such catalyst systems with high activity and excellent anti-sintering ability remains a grand challenge.Here,we report on alkali ion-promoted Pd subnanoclusters supported over defectiveγ-Al_(2)O_(3) nanosheets,which display exceptional catalytic activity for C−H bond activation in the benzene oxidation reaction.The presence of Pd subnanoclusters is verified by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy,X-ray absorption spectroscopy,and X-ray photoelectron spectroscopy.This catalyst shows excellent catalytic activity,with a turnover frequency of 280 h^(−1) and yield of 98%,in benzene oxidation reaction to give phenol under mild conditions.Moreover,the introduction of alkali ion greatly retards the diffusion and migration of metal atoms when tested under high-temperature sintering conditions.Density functional theory(DFT)calculations reveal that the addition of alkali ion to Pd nanoclusters can significantly impact the catalyst’s structure and electronic properties,and eventually promote its activity and stability.This work sheds light on the facile and scalable synthesis of highly active and stable catalyst systems with alkali additives for industrially important reactions.
基金Acknowledgements The authors were very grateful to their advisor Prof. Hongyu Wang for discussion and suggestions. This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11371309, 11471145, 11401514), the University Science Research Project of Jiangsu Province (14KJB110027), and the Foundation of Yangzhou University (2014CXJ004).
文摘For a compact symplectic manifold which is s-Lefschetz which is weaker than the decomposition for de hard Lefschetz property, we prove that the Lefschetz Rham cohomology also holds.