This paper set up a series of comprehensive targets based on the concept of'anti-freeze filler', which include reasonable water retention rate, frost heave characteristics, and compaction characteristics of filling ...This paper set up a series of comprehensive targets based on the concept of'anti-freeze filler', which include reasonable water retention rate, frost heave characteristics, and compaction characteristics of filling material. Then, a type of permeable graded gravel is proposed, suitable for high-speed railway subgrade. A series of in-door water retention, permeability, and frost heave tests were performed under different graded conditions. Water retention, permeability, and frost heave characteristic of dif- ferent graded filling materials can be determined, in order to define the gradation range of permeable graded gravel. Relying on the frost-heave monitoring record of high speed railway in Northeast China, a series of experimental studies were per- formed, which included on-site filler production, compaction test, and the anti-frost effect test, in order to improve the pro- duction and compaction techniques of permeable graded gravel. From the research of this paper, the use of permeable graded gravel subgrade as the anti-frost structure for the high-speed railway subgrade in cold areas is feasible.展开更多
Dynamic performance of insulation is one of the key parameters during the insulation application for high-speed railway subgrade. This paper conducted laboratory and field tests for the materials and dynamic load, esp...Dynamic performance of insulation is one of the key parameters during the insulation application for high-speed railway subgrade. This paper conducted laboratory and field tests for the materials and dynamic load, especially for thermal performance, elastic deformation, and accumulated deformation of insulation materials. Experiment results show that mechanical properties of insulation layer structure are stable, which satisfies the requirements of the high speed railway.展开更多
Purpose–This method will become a new development trend in subgrade structure design for high speed railways.Design/methodology/approach–This paper summarizes the structural types and design methods of subgrade bed ...Purpose–This method will become a new development trend in subgrade structure design for high speed railways.Design/methodology/approach–This paper summarizes the structural types and design methods of subgrade bed for high speed railways in China,Japan,France,Germany,the United States and other countries based on the study and analysis of existing literature and combined with the research results and practices of high speed railway subgrade engineering at home and abroad.Findings–It is found that in foreign countries,the layered reinforced structure is generally adopted for the subgrade bed of high speed railways,and the unified double-layer or multi-layer structure is adopted for the surface layer of subgrade bed,while the simple structure is adopted in China;in foreign countries,different inspection parameters are adopted to evaluate the compaction state of fillers according to their respective understanding and practice,while in China,compaction coefficient,subsoil coefficient and dynamic deformation modulus are adopted for such evaluation;in foreign countries,the subgrade top deformation control method,the subgrade bottom deformation control method,the subsurface fill strength control method are mainly adopted in subgrade bed structure design of high speed railways,while in China,dynamic deformation control of subgrade surface and dynamic strain control of subgrade bed bottom layer is adopted in the design.However,the cumulative deformation of subgrade caused by train cyclic vibration load is not considered in the existing design methods.Originality/value–This paper introduces a new subgrade structure design method based on whole-process dynamics analysis that meets subgrade functional requirements and is established on the basis of the existing research at home and abroad on prediction methods for cumulative deformation of subgrade soil.展开更多
Purpose-It is of great significance to study the influence of subgrade filling on permafrost temperature field in permafrost area for the smooth construction and safe operation of railway.Design/methodology/approach-T...Purpose-It is of great significance to study the influence of subgrade filling on permafrost temperature field in permafrost area for the smooth construction and safe operation of railway.Design/methodology/approach-The paper builds up the model for the hydrothermal coupling calculation of permafrost using finite element software COMSOL to study how permafrost temperature field changes in the short term after subgrade filling,on which basis it proposes the method of calculation for the concave distortion of freezing front in the subgrade-covered area.Findings-The results show that the freezing front below the subgrade center sinks due to the thermal effect of subgrade filling,which will trigger hydrothermal erosion in case of sufficient moisture inflows,leading to the thawing settlement or the cracking of the subgrade,etc.The heat output of soil will be hindered the most in case of July filling,in which case the sinking and the distortion of the freezing front is found to be the most severe,which the recovery of the permafrost temperature field,the slowest,constituting the most unfavorable working condition.The concave distortion of the freezing front in the subgrade area increases with the increase in temperature difference between the filler and ground surface,the subgrade height,the subgrade width and the volumetric thermal capacity of filler,while decreases with the increase of the thermal conductivity of filler.Therefore,the filler chose for engineering project shall be of small volumetric thermal capacity,low initial temperature and high thermal conductivity whenever possible.Originality/value-The concave distortion of the freezing front under different working conditions at different times after filling can be calculated using the method proposed.展开更多
Cystic fibrosis(CF)is a rare autosomal recessive disease with only one pathogenic gene cystic fibrosis transmembrane conductance regulator(CFTR).To identify the potential pathogenic mutations in a Chinese patient with...Cystic fibrosis(CF)is a rare autosomal recessive disease with only one pathogenic gene cystic fibrosis transmembrane conductance regulator(CFTR).To identify the potential pathogenic mutations in a Chinese patient with CF,we conducted Sanger sequencing on the genomic DNA of the patient and his parents and detected all 27 coding exons of CFTR and their flanking intronic regions.The patient is a compound heterozygote of c.2909G>A,p.Gly970Asp in exon 18 and c.1210-3C>G in cis with a poly-T of 5T(T5)sequence,3 bp upstream in intron 9.The splicing effect of c.1210-3C>G was verified via minigene assay in vitro,indicating that wild-type plasmid containing c.1210-3C together with T7 sequence produced a normal transcript and partial exon 10-skipping-transcript,whereas mutant plasmid containing c.1210-3G in cis with T5 sequence caused almost all mRNA to skip exon 10.Overall,c.1210-3C>G,the newly identified pathogenic mutation in our patient,in combination with T5 sequence in cis,affects the CFTR gene splicing and produces nearly no normal transcript in vitro.Moreover,this patient carries a p.Gly970Asp mutation,thus confirming the high-frequency of this mutation in Chinese patients with CF.展开更多
基金supported by the China Railways Corporation research projects entitled"The technical tests for the high speed railway subgrade frost heave prevention in the alpine"(Project No.Z2013-038)The long term observation of frost-heave technology for Ha-Da high-speed railway during the operation(Project No.Z2012-062)+2 种基金Optimal design for high-speed railway subgrade structure under different grade and environment(Project No.2014G003-A)from the Railway Scientific and Technological Research and Development Center called"The mechanism and evolution rule of the graded gravel under freeze and thawing cycles for the high speed railway"(Project No.J2014G003)The disease control technology and equipment of gradating gravel in surface layer of subgrade bed(Project No.2013YJ032)
文摘This paper set up a series of comprehensive targets based on the concept of'anti-freeze filler', which include reasonable water retention rate, frost heave characteristics, and compaction characteristics of filling material. Then, a type of permeable graded gravel is proposed, suitable for high-speed railway subgrade. A series of in-door water retention, permeability, and frost heave tests were performed under different graded conditions. Water retention, permeability, and frost heave characteristic of dif- ferent graded filling materials can be determined, in order to define the gradation range of permeable graded gravel. Relying on the frost-heave monitoring record of high speed railway in Northeast China, a series of experimental studies were per- formed, which included on-site filler production, compaction test, and the anti-frost effect test, in order to improve the pro- duction and compaction techniques of permeable graded gravel. From the research of this paper, the use of permeable graded gravel subgrade as the anti-frost structure for the high-speed railway subgrade in cold areas is feasible.
基金supported by the China Railways Corporation research project entitled "The technical tests for the high speed railway subgrade frost heave prevention in the alpine" (Project No. Z2013-038)"The long term observation of frost-heave technology for Ha-Da high-speed railway during the operation" (Project No. Z2012-062)+2 种基金"Optimal design for high-speed railway subgrade structure under different grade and environment" (Project No. 2014G003-A)the railway scientific and technological research and development center called "The mechanism and evolution rule of the graded gravel under freeze and thawing cycles for the high speed railway" (Project No. J2014G003)"The disease control technology and equipment of gradating gravel in surface layer of subgrade bed" (Project No. 2013YJ032)
文摘Dynamic performance of insulation is one of the key parameters during the insulation application for high-speed railway subgrade. This paper conducted laboratory and field tests for the materials and dynamic load, especially for thermal performance, elastic deformation, and accumulated deformation of insulation materials. Experiment results show that mechanical properties of insulation layer structure are stable, which satisfies the requirements of the high speed railway.
基金The research was supported by the National Natural Science Foundation of China(Grant Nos.41731288 and 41972299)the Science and Technology Research and Development Program of China Railway(Grant No.P2018G050)+1 种基金the Young Top-Notch Talent Project of National“Ten Thousands Talent Program”(Grant No.2019YJ300)the Major Scientific Research and Development Project of China Academy of Railway Sciences Corporation Limited(Grant No.2019YJ026).
文摘Purpose–This method will become a new development trend in subgrade structure design for high speed railways.Design/methodology/approach–This paper summarizes the structural types and design methods of subgrade bed for high speed railways in China,Japan,France,Germany,the United States and other countries based on the study and analysis of existing literature and combined with the research results and practices of high speed railway subgrade engineering at home and abroad.Findings–It is found that in foreign countries,the layered reinforced structure is generally adopted for the subgrade bed of high speed railways,and the unified double-layer or multi-layer structure is adopted for the surface layer of subgrade bed,while the simple structure is adopted in China;in foreign countries,different inspection parameters are adopted to evaluate the compaction state of fillers according to their respective understanding and practice,while in China,compaction coefficient,subsoil coefficient and dynamic deformation modulus are adopted for such evaluation;in foreign countries,the subgrade top deformation control method,the subgrade bottom deformation control method,the subsurface fill strength control method are mainly adopted in subgrade bed structure design of high speed railways,while in China,dynamic deformation control of subgrade surface and dynamic strain control of subgrade bed bottom layer is adopted in the design.However,the cumulative deformation of subgrade caused by train cyclic vibration load is not considered in the existing design methods.Originality/value–This paper introduces a new subgrade structure design method based on whole-process dynamics analysis that meets subgrade functional requirements and is established on the basis of the existing research at home and abroad on prediction methods for cumulative deformation of subgrade soil.
基金supported by the Fund of China Academy of Railway Sciences Corporation Limited (2019YJ041).
文摘Purpose-It is of great significance to study the influence of subgrade filling on permafrost temperature field in permafrost area for the smooth construction and safe operation of railway.Design/methodology/approach-The paper builds up the model for the hydrothermal coupling calculation of permafrost using finite element software COMSOL to study how permafrost temperature field changes in the short term after subgrade filling,on which basis it proposes the method of calculation for the concave distortion of freezing front in the subgrade-covered area.Findings-The results show that the freezing front below the subgrade center sinks due to the thermal effect of subgrade filling,which will trigger hydrothermal erosion in case of sufficient moisture inflows,leading to the thawing settlement or the cracking of the subgrade,etc.The heat output of soil will be hindered the most in case of July filling,in which case the sinking and the distortion of the freezing front is found to be the most severe,which the recovery of the permafrost temperature field,the slowest,constituting the most unfavorable working condition.The concave distortion of the freezing front in the subgrade area increases with the increase in temperature difference between the filler and ground surface,the subgrade height,the subgrade width and the volumetric thermal capacity of filler,while decreases with the increase of the thermal conductivity of filler.Therefore,the filler chose for engineering project shall be of small volumetric thermal capacity,low initial temperature and high thermal conductivity whenever possible.Originality/value-The concave distortion of the freezing front under different working conditions at different times after filling can be calculated using the method proposed.
基金supported by the National Key Research and Development Program of China(No.2016YFC0901502 to Kai-Feng Xu,No.2016YFC0905100 to Xue Zhang,No.2017YFC1001201 to Yaping Liu)the National Natural Science Foundation of China(NSFC)(Nos.81788101,81230015 to Xue Zhang,No.31271345 to Yaping Liu)+1 种基金the CAMS Initiative for Medical Sciences(CIFMS)(No.2016-I2M-1-002 to Xue Zhang,Yaping LiuNo.2018-I2M-1-003 to Xinlun Tian,No.2017-I2M-2-001 to Kai-Feng Xu).
文摘Cystic fibrosis(CF)is a rare autosomal recessive disease with only one pathogenic gene cystic fibrosis transmembrane conductance regulator(CFTR).To identify the potential pathogenic mutations in a Chinese patient with CF,we conducted Sanger sequencing on the genomic DNA of the patient and his parents and detected all 27 coding exons of CFTR and their flanking intronic regions.The patient is a compound heterozygote of c.2909G>A,p.Gly970Asp in exon 18 and c.1210-3C>G in cis with a poly-T of 5T(T5)sequence,3 bp upstream in intron 9.The splicing effect of c.1210-3C>G was verified via minigene assay in vitro,indicating that wild-type plasmid containing c.1210-3C together with T7 sequence produced a normal transcript and partial exon 10-skipping-transcript,whereas mutant plasmid containing c.1210-3G in cis with T5 sequence caused almost all mRNA to skip exon 10.Overall,c.1210-3C>G,the newly identified pathogenic mutation in our patient,in combination with T5 sequence in cis,affects the CFTR gene splicing and produces nearly no normal transcript in vitro.Moreover,this patient carries a p.Gly970Asp mutation,thus confirming the high-frequency of this mutation in Chinese patients with CF.