期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Sulfolane‑Based Flame‑Retardant Electrolyte for High‑Voltage Sodium‑Ion Batteries
1
作者 Xuanlong He Jie Peng +15 位作者 Qingyun Lin Meng Li Weibin Chen Pei Liu Tao Huang Zhencheng Huang Yuying Liu Jiaojiao Deng Shenghua Ye Xuming Yang Xiangzhong Ren Xiaoping Ouyang Jianhong Liu Biwei Xiao Jiangtao Hu qianling zhang 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期498-516,共19页
Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In p... Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In particular,an unstable cathode–electrolyte interphase(CEI)leads to successive electrolyte side reactions,transition metal leaching and rapid capacity decay,which tends to be exacerbated under high-voltage conditions.Therefore,constructing dense and stable CEIs are crucial for high-performance SIBs.This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether,which exhibited excellent oxidative stability and was able to form thin,dense and homogeneous CEI.The excellent CEI enabled the O3-type layered oxide cathode NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)(NaNMF)to achieve stable cycling,with a capacity retention of 79.48%after 300 cycles at 1 C and 81.15%after 400 cycles at 2 C with a high charging voltage of 4.2 V.In addition,its nonflammable nature enhances the safety of SIBs.This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes. 展开更多
关键词 Sodium-ion batteries Sulfolane-based electrolyte High voltage Layered oxide cathode Flame retardant
下载PDF
Building Fe atom–cluster composite sites using a site occupation strategy to boost electrochemical oxygen reduction
2
作者 Tingyi Zhou Yi Guan +9 位作者 Changjie He Lei zhang Xueliang Sun Zhongxin Song qianling zhang Chuanxin He Xiantao Jiang Zhaoyan Luo Wei Xing Xiangzhong Ren 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期276-286,共11页
The high-temperature pyrolysis process for preparing M–N–C single-atom catalyst usually results in high heterogeneity in product structure concurrently contains multiscale metal phases from single atoms(SAs),atomic ... The high-temperature pyrolysis process for preparing M–N–C single-atom catalyst usually results in high heterogeneity in product structure concurrently contains multiscale metal phases from single atoms(SAs),atomic clusters to nanoparticles.Therefore,understanding the interactions among these components,especially the synergistic effects between single atomic sites and cluster sites,is crucial for improving the oxygen reduction reaction(ORR)activity of M–N–C catalysts.Accordingly,herein,we constructed a model catalyst composed of both atomically dispersed FeN4 SA sites and adjacent Fe clusters through a site occupation strategy.We found that the Fe clusters can optimize the adsorption strength of oxygen reduction intermediates on FeN4 SA sites by introducing electron-withdrawing–OH ligands and decreasing the d-band center of the Fe center.The as-developed catalyst exhibits encouraging ORR activity with halfwave potentials(E1/2)of 0.831 and 0.905 V in acidic and alkaline media,respectively.Moreover,the catalyst also represents excellent durability exceeding that of Fe–N–C SA catalyst.The practical application of Fe(Cd)–CNx catalyst is further validated by its superior activity and stability in a metalair battery device.Our work exhibits the great potential of synergistic effects between multiphase metal species for improvements of singleatom site catalysts. 展开更多
关键词 d-band center metal clusters oxygen reduction reaction single-atom catalyst site occupations strategy
下载PDF
Lithium Salt Combining Fluoroethylene Carbonate Initiates Methyl Methacrylate Polymerization Enabling Dendrite-Free Solid-State Lithium Metal Battery
3
作者 Xue Ye Jianneng Liang +6 位作者 Baorong Du Yongliang Li Xiangzhong Ren Dazhuan Wu Xiaoping Ouyang qianling zhang Jianhong Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期50-59,共10页
This work demonstrates a novel polymerization-derived polymer electrolyte consisting of methyl methacrylate,lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate.The polymerization of MMA was initiat... This work demonstrates a novel polymerization-derived polymer electrolyte consisting of methyl methacrylate,lithium bis(trifluoromethanesulfonyl)imide and fluoroethylene carbonate.The polymerization of MMA was initiated by the amino compounds following an anionic catalytic mechanism.LiTFSI plays both roles including the initiator and Li ion source in the polymer electrolyte.Normally,lithium bis(trifluoromethanesulfonyl)imide has difficulty in initiating the polymerization reaction of methyl methacrylate monomer,a very high concentration of lithium bis(trifluoromethanesulfonyl)imide is needed for initiating the polymerization.However,the fluoroethylene carbonate additive can work as a supporter to facilitate the degree of dissociation of lithium bis(trifluoromethanesulfonyl)imide and increase its initiator capacity due to the high dielectric constant.The as-prepared poly-methyl methacrylate-based polymer electrolyte has a high ionic conductivity(1.19×10^(−3)S cm^(−1)),a wide electrochemical stability window(5 V vs Li^(+)/Li),and a high Li ion transference number(t_(Li^(+)))of 0.74 at room temperature(RT).Moreover,this polymerization-derived polymer electrolyte can effectively work as an artificial protective layer on Li metal anode,which enabled the Li symmetric cell to achieve a long-term cycling performance at 0.2 mAh cm^(−2)for 2800 h.The LiFePO_(4)battery with polymerization-derived polymer electrolyte-modified Li metal anode shows a capacity retention of 91.17%after 800 cycles at 0.5 C.This work provides a facile and accessible approach to manufacturing poly-methyl methacrylate-based polymerization-derived polymer electrolyte and shows great potential as an interphase in Li metal batteries. 展开更多
关键词 in situ polymerization lithium anode polymer electrolyte solid-state lithium batteries
下载PDF
Progress and perspective of single-atom catalysts for membrane electrode assembly of fuel cells 被引量:3
4
作者 Zhongxin Song Junjie Li +4 位作者 qianling zhang Yongliang Li Xiangzhong Ren Lei zhang Xueliang Sun 《Carbon Energy》 SCIE CSCD 2023年第7期38-56,共19页
A fuel cell is an energy conversion device that can continuously input fuel and oxidant into the device through an electrochemical reaction to release electrical energy.Although noble metals show good activity in fuel... A fuel cell is an energy conversion device that can continuously input fuel and oxidant into the device through an electrochemical reaction to release electrical energy.Although noble metals show good activity in fuel cell-related electrochemical reactions,their ever-increasing price considerably hinders their industrial application.Improvement of atom utilization efficiency is considered one of the most effective strategies to improve the mass activity of catalysts,and this allows for the use of fewer catalysts,saving greatly on the cost.Thus,single-atom catalysts(SACs)with an atom utilization efficiency of 100%have been widely developed,which show remarkable performance in fuel cells.In this review,we will describe recent progress on the development of SACs for membrane electrode assembly of fuel cell applications.First,we will introduce several effective routes for the synthesis of SACs.The reaction mechanism of the involved reactions will also be introduced as it is highly determinant of the final activity.Then,we will systematically summarize the application of Pt group metal(PGM)and nonprecious group metal(non-PGM)catalysts in membrane electrode assembly of fuel cells.This review will offer numerous experiences for developing potential industrialized fuel cell catalysts in the future. 展开更多
关键词 fuel cells membrane electrode assembly oxygen reduction reaction reaction mechanism single-atom catalysts
下载PDF
Hopf bifurcation of nonlinear system with multisource stochastic factors
5
作者 Xinyu Bai Shaojuan Ma +1 位作者 qianling zhang Qiyi Liu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第2期93-97,共5页
The article mainly explores the Hopf bifurcation of a kind of nonlinear system with Gaussian white noise excitation and bounded random parameter.Firstly,the nonlinear system with multisource stochastic fac-tors is red... The article mainly explores the Hopf bifurcation of a kind of nonlinear system with Gaussian white noise excitation and bounded random parameter.Firstly,the nonlinear system with multisource stochastic fac-tors is reduced to an equivalent deterministic nonlinear system by the sequential orthogonal decomposi-tion method and the Karhunen-Loeve(K-L)decomposition theory.Secondly,the critical conditions about the Hopf bifurcation of the equivalent deterministic system are obtained.At the same time the influence of multisource stochastic factors on the Hopf bifurcation for the proposed system is explored.Finally,the theorical results are verified by the numerical simulations. 展开更多
关键词 Multisource stochastic factors Gaussian white noise K-L decomposition Hopf bifurcation Random parameter
下载PDF
Nitrogen and sulfur dual-doped high-surface-area hollow carbon nanospheres for efficient CO2 reduction 被引量:5
6
作者 Guodong Li Yongjie Qin +6 位作者 Yu Wu Lei Pei Qi Hu Hengpan Yang qianling zhang Jianhong Liu Chuanxin He 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第5期830-838,共9页
The electrochemical reduction of CO2(CO2 RR) can substantially contribute to the production of useful chemicals and reduction of global CO2 emissions. Herein, we presented N and S dual-doped high-surface-area carbon m... The electrochemical reduction of CO2(CO2 RR) can substantially contribute to the production of useful chemicals and reduction of global CO2 emissions. Herein, we presented N and S dual-doped high-surface-area carbon materials(SZ-HCN) as CO2 RR catalysts. N and S were doped by one-step pyrolysis of a N-containing polymer and S powder. ZnCl2 was applied as a volatile porogen to prepare porous SZ-HCN. SZ-HCN with a high specific surface area(1510 m2 g–1) exhibited efficient electrocatalytic activity and selectivity for CO2 RR. Electrochemical measurements demonstrated that SZ-HCN showed excellent catalytic performance for CO2-to-CO reduction with a high CO Faradaic efficiency(~93%) at-0.6 V. Furthermore, SZ-HCN offered a stable current density and high CO selectivity over at least 20 h continuous operation, revealing remarkable electrocatalytic durability. The experimental results and density functional theory calculations indicated that N and S dual-doped carbon materials required lower Gibbs free energy to form the COOH* intermediate than that for single-N-doped carbon for CO2-to-CO reduction, thereby enhancing CO2 RR activity. 展开更多
关键词 High specific surface area Hollow structure Carbon-based catalysts CO2 reduction reaction Electrocatalytic selectivity
下载PDF
A cerium-doped NASICON chemically coupled poly(vinylidene fluoride-hexafluoropropylene)-based polymer electrolyte for high-rate and high-voltage quasi-solid-state lithium metal batteries 被引量:1
7
作者 Tao Huang Wei Xiong +13 位作者 Xue Ye Zhencheng Huang Yuqing Feng Jianneng Liang Shenghua Ye Jishou Piao Xinzhong Wang Yongliang Li Xiangzhong Ren Chao Chen Shaoluan Huang Xiaoping Ouyang qianling zhang Jianhong Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期311-321,I0007,共12页
The isolated inorganic particles within composite polymer electrolytes(CPEs) are not correlated to the Li^(+)transfer network,resulting in the polymer dominating the low ionic conductivity of CPEs.Therefore,we develop... The isolated inorganic particles within composite polymer electrolytes(CPEs) are not correlated to the Li^(+)transfer network,resulting in the polymer dominating the low ionic conductivity of CPEs.Therefore,we developed novel quasi-solid-state CPEs of a Ce-doped Na super ion conductors(NASICON)Na_(1.3+x)Al_(0.3)Ce_(x)Ti_(1.7-x)(PO_(4))_(3)(NCATP) chemically coupled poly(vinylidene fluoride-hexafluoropropylene)(PVDF-HFP)/Li-bis(trifluoromethanes-ulfonyl)imide(LiTFSI) matrix.A strong interaction between Ce^(3+)from NCATP and TFSI-anion from the polymer matrix contributes to the fast Li+transportation at the interface.The PVDF-HFP/NCATP CPEs exhibit an ionic conductivity of 2.16 × 0^(-3) S cm^(-1) and a Li^(+) transference number of 0.88.A symmetric Li/Li cell with NCATP-integrated CPEs at 0.1 mA cm^(-2) presents outstanding cycling stability over 2000 h at 25℃.The quasi-solid-state Li metal batteries of Li/CPEs/LiFePO_(4) at 2 C after 400 cycles and Li/CPEs/LiCoO_(2) at 0.2 C after 120 cycles deliver capacities of 100 and 152 mAh g^(-1) at 25℃,respectively. 展开更多
关键词 Quasi-solid-state batteries Composite polymer electrolytes High conductivity High-voltage cathode Oxygen vacancies
下载PDF
Cost-effective natural graphite reengineering technology for lithium ion batteries
8
作者 Pei Liu Hongbin Wang +8 位作者 Tao Huang Liewu Li Wei Xiong Shaoluan Huang Xiangzhong Ren Xiaoping Ouyang Jiangtao Hu qianling zhang Jianhong Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第1期547-551,共5页
Graphite tailings produced by natural graphite is usually regarded as garbage to be buried underground,which would result in a certain waste of resources.Here,in order to explore the utilization of natural graphite ta... Graphite tailings produced by natural graphite is usually regarded as garbage to be buried underground,which would result in a certain waste of resources.Here,in order to explore the utilization of natural graphite tailings(NGT),a liquid-polyacrylonitrile(LPAN)is used to modify the NGT fragments and aggregate them together to form secondary graphite particles with low surface area and high tap density.Moreover,the modified NGT show much better electrochemical performances than those of original one.When tested in full cells coupled with NMC532 cathode,the material achieves a high rate capability and cycle stability at the cutoff voltage of 4.25 V as well as 4.45 V,which maintains 84.32%capacity retention after 500 cycles at 1 C rate(4.25 V),higher than that of the pristine one(73.65%).The enhanced performances can be attributed to the use of LPAN to create a unique carbon layer upon graphite tailings to reconstruct surface and repair defects,and also to granulate an isotropic structure of secondary graphite particles,which can help to weaken the anisotropy of Li^(+)diffusion pathway and form a uniform,complete and stable solid-electrolyte-interface(SEI)on the surface of primary NGT fragments to promote a fast Li+diffusion and suppress lithium metal dendrites upon charge and discharge. 展开更多
关键词 Natural graphite Reengineering technology Liquid-polyacrylonitrile Lithium ion batteries High performance
原文传递
调节Co_(3)O_(4)的价电子结构提高硝酸根还原制氨的催化活性 被引量:1
9
作者 陈文达 陈志达 +11 位作者 黄振城 郑黎荣 赵晓娟 胡江涛 曹慧群 李永亮 任祥忠 欧阳晓平 叶盛华 颜学庆 张黔玲 刘剑洪 《Science China Materials》 SCIE EI CAS CSCD 2023年第10期3901-3911,共11页
通过硝酸根电化学还原反应将NO_(3)^(-)转化为NH_(3)是一种有前景的制氨和“绿氢”储存方案.Co_(3)O_(4)对于硝酸根还原析氨反应表现出较高的析氨法拉第效率和稳定性,有望成为理想的催化剂.然而,在Co_(3)O_(4)上发生硝酸根还原反应仍需... 通过硝酸根电化学还原反应将NO_(3)^(-)转化为NH_(3)是一种有前景的制氨和“绿氢”储存方案.Co_(3)O_(4)对于硝酸根还原析氨反应表现出较高的析氨法拉第效率和稳定性,有望成为理想的催化剂.然而,在Co_(3)O_(4)上发生硝酸根还原反应仍需较高的过电位,从而阻碍了能量转换效率的提升.本文中,我们合成了Cu掺杂Co_(3)O_(4)多孔空心纳米球用作硝酸根还原析氨催化剂.Cu掺杂在保障析氨法拉第效率和稳定性的前提下大幅降低了反应所需的过电位,有效提高了析氨速率.实验和理论分析均表明,Cu掺杂使Co_(3)O_(4)的最高占据态能量上移,缩小了Co_(3)O_(4)的最高占据态与NO_(3)^(-)的最低未占据分子轨道之间的能垒,从而降低了电子从Co_(3)O_(4)向NO_(3)^(-)跃迁所需的过电位,赋予了Cu掺杂Co_(3)O_(4)多孔空心纳米球优异的硝酸根还原析氨电催化活性和耐久性.本研究为纳米材料的电化学性能调控研究提供了新的理论视角. 展开更多
关键词 Co_(3)O_(4) nitrate reduction reaction AMMONIA frontier orbital
原文传递
Iridium photosensitizer constructed liposomes with hypoxia-activated prodrug to destrust hepatocellular carcinoma
10
作者 Shuangling Luo Chao Liang +1 位作者 qianling zhang Pingyu zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第4期110-115,共6页
Hypoxic tumor microenvironment is a major challenge for photodynamic therapy(PDT). To overcome this problem, PDT combined hypoxia-activated chemotherapy is a promising strategy for hypoxic cancer therapy. Herein, a mu... Hypoxic tumor microenvironment is a major challenge for photodynamic therapy(PDT). To overcome this problem, PDT combined hypoxia-activated chemotherapy is a promising strategy for hypoxic cancer therapy. Herein, a multifunctional liposome(AQ4N-Ir1-sorafenib-liposome) is prepared by encapsulating a hypoxia-activated prodrug AQ4N, a photosensitizer iridium(III) complex and hepatocellular carcinoma(HCC) targeting drug sorafenib, for synergistic therapy of HCC. Ir1-mediated PDT upon irradiation induces ROS generation and hypoxic environment, which leads to the disassembly of the liposome and activates the antitumor activity of AQ4N. Meantime, the co-delivered sorafenib could effectively target therapy of HCC. It is noted that ferroptosis mechanism is proved during the treatment. This work contributes to the design of hypoxia-responsive multifunctional liposome for combination of chemotherapy, targeting therapy and PDT. It is a promising strategy for hypoxic HCC therapy. 展开更多
关键词 Hypoxia activation Iridium photosensitizer Ferroptosis Photodynamic therapy CHEMOTHERAPY
原文传递
Modulating the electronic spin state by constructing dual-metal atomic pairs for activating the dynamic site of oxygen reduction reaction
11
作者 Shenghua Ye Shuhua Xie +11 位作者 Yaqi Lei Xiuyuan Yang Jing Hu Lirong Zheng Zhida Chen Yonghuan Fu Xiangzhong Ren Yongliang Li Xiaoping Ouyang qianling zhang Jianhong Liu Xueliang Sun 《Nano Research》 SCIE EI CSCD 2023年第2期1869-1877,共9页
In this study,dual-metal atomic pairs of manganese(Mn)-iron(Fe)binuclear sites(BNSs)with two conjoint MnN4 and FeN4 moieties(MnFeN8)anchored onto a graphite-like structure(GLS)(Mn-Fe BNSs/GLS)were constructed.The binu... In this study,dual-metal atomic pairs of manganese(Mn)-iron(Fe)binuclear sites(BNSs)with two conjoint MnN4 and FeN4 moieties(MnFeN8)anchored onto a graphite-like structure(GLS)(Mn-Fe BNSs/GLS)were constructed.The binuclear MnFeN8 structure was verified experimentally and theoretically.Magnetic measurements and Gaussian calculations reveal that this unique Mn-Fe BNSs exhibit strong short-range electronic interaction between Mn and Fe sites,which decouples two paired d electrons in Fe sites,thereby transforming Fe sites from an intermediate to a high spin state.The optimal electronic configuration of Fe sites and their binuclear structure facilitate an oxygen reduction reaction(ORR)thermodynamically and dynamically,respectively,endowing Mn-Fe BNSs with improved ORR performance. 展开更多
关键词 manganese(Mn)-iron(Fe)binuclear sites synergistic effect spin state oxygen reduction reaction
原文传递
金属配合物在双光子荧光探针中的应用研究 被引量:3
12
作者 谢嘉恩 罗雨珩 +1 位作者 张黔玲 张平玉 《化学进展》 SCIE CAS CSCD 北大核心 2021年第1期111-123,共13页
金属配合物因其优异的光物理性质,如配位结构可调、好的光稳定性、大的斯托克位移、高的荧光量子产率与长的荧光寿命等,在生物成像、分子探针、医学影像等领域中备受关注。与单光子吸收相比,双光子吸收的金属配合物因其具有更加优秀的... 金属配合物因其优异的光物理性质,如配位结构可调、好的光稳定性、大的斯托克位移、高的荧光量子产率与长的荧光寿命等,在生物成像、分子探针、医学影像等领域中备受关注。与单光子吸收相比,双光子吸收的金属配合物因其具有更加优秀的深度分辨率以及低光损伤性等优点,近些年被广泛应用于生物分子的荧光探针和细胞器染料等。本文综述了近年来具有双光子吸收的金属配合物对生物分子(如pH、O_(2)、HClO、NO、SO_(2)、GSH、DNA等)的响应检测用于疾病的诊断,以及作为细胞器(如线粒体、溶酶体、脂滴、细胞核等)染料探针用于细胞内动态行为和演化过程的实时示踪研究。最后,针对金属配合物在生物分子探针以及细胞器染料等方面的应用前景进行了分析和探讨。 展开更多
关键词 金属配合物 双光子吸收 生物分子检测 细胞器染料
原文传递
Rational design of Ru species on N-doped graphene promoting water dissociation for boosting hydrogen evolution reaction 被引量:1
13
作者 Zhida Chen Wenda Chen +13 位作者 Lirong Zheng Tao Huang Jing Hu Yaqi Lei Qi Yuan Xiangzhong Ren Yongliang Li Lei zhang Shaoluan Huang Shenghua Ye qianling zhang Xiaoping Ouyang Xueliang Sun Jianhong Liu 《Science China Chemistry》 SCIE EI CSCD 2022年第3期521-531,共11页
In this study,the morphological distribution of Ru on nitrogen-doped graphene(NG)could be rationally regulated via modulating the combination mode between Ru precursor and the zeolite imidazolate framework-8(ZIF-8).Th... In this study,the morphological distribution of Ru on nitrogen-doped graphene(NG)could be rationally regulated via modulating the combination mode between Ru precursor and the zeolite imidazolate framework-8(ZIF-8).The cation exchange and host-guest strategies respectively resulted in two different combination modes between Ru precursor and ZIF-8 anchored on graphene.Following pyrolysis of the above precursors,Ru single-atom sites(SASs)with and without Ru nanoparticles(NPs)were formed selectively on NG(denoted as Ru SASs+NPs/NG and Ru SASs/NG,respectively).Ru SASs+NPs/NG exhibited excellent hydrogen evolution reaction(HER)performance in alkaline solutions(η_(10)=12 mV,12.57 A mg^(-1)_(Ru) at 100 mV),which is much better than Ru SASs/NG.The experimental and theoretical study revealed that Ru SASs could adsorb hydrogen with optimal adsorption strength,while Ru NPs could lower the barrier of water molecule dissociation,and thus Ru SASs and Ru NPs could synergistically promote the catalytic performance of HER in alkaline solutions. 展开更多
关键词 RU single atomic sites NANOPARTICLES water dissociation synergistic effect
原文传递
Sonodynamic cancer therapy by novel iridium-gold nanoassemblies
14
作者 Jiayi Zhu Ai Ouyang +5 位作者 Zhuanglin Shen Zhihao Pan Samya Banerjee qianling zhang Yantao Chen Pingyu zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第4期1907-1912,共6页
Metal-based compounds with excellent photo-physical properties show good photochemotherapeutic performance.But,low in-depth tissue penetration of light limits their effectivity for deeply buried tumors.Encouraged by t... Metal-based compounds with excellent photo-physical properties show good photochemotherapeutic performance.But,low in-depth tissue penetration of light limits their effectivity for deeply buried tumors.Encouraged by the sonosensitizing ability of the traditional organic photosensitizers,here,we developed AuNPs@Ir1 as a sonosensitizer by hybridizing an organometallic Ir(Ⅲ) complex(Ir1) with ultrasmall gold nanoparticles(AuNPs) for efficient tumor sonodynamic therapy(SDT) for the first time.AuNPs@Ir1 rapidly entered the cancer cells,produced ^(1)O_(2),and catalytically oxidized NADH to NAD;under ultrasound(US)irradiation,thus resulted in cancer cells oncosis.Because of efficient passive retention in tumors post intravenous injection,AuNPs@Ir1 further efficiently inhibited the growth of tumors in-vivo under US stimulation without long-term toxicity to other organs.Overall,this work presents the excellent US triggered in-vitro and in-vivo anticancer profile of the novel AuNPs@Ir1.It is expected to increase the scope of SDT for metal-based anticancer drugs. 展开更多
关键词 Metals in medicine Iridium complex SONOCATALYSIS Sonodynamic therapy Bioinorganic chemistry
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部