Developing the highly active, cost-effective, environmental-friendly, and ultra-stable nonprecious electrocatalysts for hydrogen evolution reaction(HER) is distinctly indispensable for the large-scale practical applic...Developing the highly active, cost-effective, environmental-friendly, and ultra-stable nonprecious electrocatalysts for hydrogen evolution reaction(HER) is distinctly indispensable for the large-scale practical applications of hydrolytic hydrogen production. Herein, we report the synthesis of well-integrated electrode, NiV layered double hydroxide nanosheet array grown in-situ on porous nickel foam(abbreviated as in-NiV-LDH/NF) via the facile one-step hydrothermal route. Interestingly, the valence configuration of vanadium(V) sites in such NiV-LDH are well dominated by the innovative use of NF as the reducing regulator, achieving the reassembled in-NiV-LDH/NF with a high proportion of trivalent V ions(V3+), and then an enhanced intrinsic electrocatalytic HER activity. The HER testing results show that the in-NiVLDH/NF drives the current densities of 10 and 100 mA cm-2 at extremely low overpotentials of 114 and 245 mV without iR-compensation respectively, even outperforms commercial 20 wt% Pt/C at the large current density of over 80 mA cm-2 in alkaline media, as well as gives robust catalytic durability of at least 100 h in both alkaline and neutral media. More importantly, this work provides a fresh perspective for designing bimetal(oxy) hydroxides electrocatalysts with efficient hydrogen generation.展开更多
A robust solid-electrolyte interphase(SEI)enabled by electrolyte additive is a promising approach to stabilize Li anode and improve Li cycling efficiency.However,the self-sacrificial nature of SEI forming additives li...A robust solid-electrolyte interphase(SEI)enabled by electrolyte additive is a promising approach to stabilize Li anode and improve Li cycling efficiency.However,the self-sacrificial nature of SEI forming additives limits their capability to stabilize Li anode for long-term cycling.Herein,we demonstrate nanocapsules made from metal–organic frameworks for sustained release of LiNO3 as surface passivation additive in commercial carbonate-based electrolyte.The nanocapsules can offer over 10 times more LiNO3 than the solubility of LiNO3.Continuous supply of LiNO3 by nanocapsules forms a nitride-rich SEI layer on Li anode and persistently remedies SEI during prolonged cycling.As a result,lifespan of thin Li anode in 50μm,which experiences drastic volume change and repeated SEI formation during cycling,has been notably improved.By pairing with an industry-level thick LiCoO2 cathode,practical Li-metal full cell demonstrates a remarkable capacity retention of 90%after 240 cycles,in contrast to fast capacity drop after 60 cycles in LiNO3 saturated electrolyte.展开更多
Background:Water migration and use are important processes in trees.However,it is possible to overestimate transpiration by equating the water absorbed through the plant roots to that diffused back to the atmosphere t...Background:Water migration and use are important processes in trees.However,it is possible to overestimate transpiration by equating the water absorbed through the plant roots to that diffused back to the atmosphere through stomatal transpiration.Therefore,it is necessary to quantify the water transpired and stored in plants.Method:The δ^(2)H/δ^(18)O technique and heat ratio method were used to explore the water usage of coniferous and broad-leaved tree species,including the proportions of water used for transpiration and water storage.Results:Platycladus orientalis and Quercus variabilis had strong plasticity in their water usage from different sources.Platycladus orientalis primarily used groundwater(30.5%)and the 60-100-cm soil layer(21.6%)throughout the experimental period and was sensitive to precipitation,absorbing water from the 0-20-cm layer(26.6%)during the rainy season.Quercus variabilis absorbed water from all sources(15.7%-36.5%)except from the 40-60-cm soil layer during the dry season.In addition,it did not change its water source but increased its groundwater uptake during the rainy season.The annual mean water fluxes of P.orientalis and Q.variabilis were 374.69 and 469.50 mm·year−1,with 93.49% and 93.91% of the water used for transpiration,respectively.However,nocturnal sap flow in P.orientalis and Q.variabilis was mainly used for water storage in the trunk rather than transpiration,which effectively alleviated drought stress and facilitated the transport of nutrients.Conclusions:The water stored in both species comprised 6%-7% of the total water fluxes and,therefore,should be considered in water balance models.展开更多
The hydrophobically modi fied ceramic membranes have great potential for energy-ef ficient membrane distillation.In this work,flat-sheet ceramic membranes with a superhydrophobic surface were fabricated by grafting 1H...The hydrophobically modi fied ceramic membranes have great potential for energy-ef ficient membrane distillation.In this work,flat-sheet ceramic membranes with a superhydrophobic surface were fabricated by grafting 1H,1H,2H,2H-per fluorooctyltrichlorosilane or 1H,1H,2H,2H-per fluorodecyltriethoxysilane and followed by ultraviolet irradiation.The surface water contact angle was improved from 46° of original ceramic membrane to 159°,which exhibited a stable and excellent superhydrophobic effect.The modi fied membranes showed a high flux of 27.28 kg·m^(-2)·h^(-1) and simultaneously maintained an excellent retention rate of 99.99%,when used in vacuum membrane distillation process for treatment of a 1 wt% NaCl(75 °C) aqueous solution.These results suggested that superhydrophobic modi fication of ceramic surface is a facile and cost-effective way to achieve higher membrane distillation performance.The superhydrophobically-modi fied ceramic membrane with an excellent desalination capacity would show considerable potential in practical membrane distillation utilizations.展开更多
In this study,we developed a system based on deep space–time neural networks for gesture recognition.When users change or the number of gesture categories increases,the accuracy of gesture recognition decreases consi...In this study,we developed a system based on deep space–time neural networks for gesture recognition.When users change or the number of gesture categories increases,the accuracy of gesture recognition decreases considerably because most gesture recognition systems cannot accommodate both user differentiation and gesture diversity.To overcome the limitations of existing methods,we designed a onedimensional parallel long short-term memory–fully convolutional network(LSTM–FCN)model to extract gesture features of different dimensions.LSTM can learn complex time dynamic information,whereas FCN can predict gestures efficiently by extracting the deep,abstract features of gestures in the spatial dimension.In the experiment,50 types of gestures of five users were collected and evaluated.The experimental results demonstrate the effectiveness of this system and robustness to various gestures and individual changes.Statistical analysis of the recognition results indicated that an average accuracy of approximately 98.9% was achieved.展开更多
The era of information explosion is coming and information need to be continuously stored and randomly accessed over long-term periods,which constitute an insurmountable challenge for existing data centers.At present,...The era of information explosion is coming and information need to be continuously stored and randomly accessed over long-term periods,which constitute an insurmountable challenge for existing data centers.At present,computing devices use the von Neumann architecture with separate computing and memory units,which exposes the shortcomings of“memory bottleneck”.Nonvolatile memristor can realize data storage and in-memory computing at the same time and promises to overcome this bottleneck.Phase-change random access memory(PCRAM)is called one of the best solutions for next generation non-volatile memory.Due to its high speed,good data retention,high density,low power consumption,PCRAM has the broad commercial prospects in the in-memory computing application.In this review,the research progress of phase-change materials and device structures for PCRAM,as well as the most critical performances for a universal memory,such as speed,capacity,and power consumption,are reviewed.By comparing the advantages and disadvantages of phase-change optical disk and PCRAM,a new concept of optoelectronic hybrid storage based on phase-change material is proposed.Furthermore,its feasibility to replace existing memory technologies as a universal memory is also discussed as well.展开更多
High-energy Li-metal batteries (LMBs) suffer from short cycle life and safety issues due to severe parasitic reactions and dendrite growth of Li metal anode (LMA) in liquid electrolytes [1–3].It is generally believed...High-energy Li-metal batteries (LMBs) suffer from short cycle life and safety issues due to severe parasitic reactions and dendrite growth of Li metal anode (LMA) in liquid electrolytes [1–3].It is generally believed that replacing liquid electrolytes with solidstate electrolytes (SSEs) would be a feasible approach for practical LMBs [4,5]. Conventional SSEs including ceramic and polymer electrolytes have been studied for decades.展开更多
The root of Scutellaria baicalensis Georgi is traditionally used as medicine,and it has been confirmed that S.baicalensis Georgi has flavonoid chemical constituents,pharmacological activity and cosmetic efficacy.With ...The root of Scutellaria baicalensis Georgi is traditionally used as medicine,and it has been confirmed that S.baicalensis Georgi has flavonoid chemical constituents,pharmacological activity and cosmetic efficacy.With the extensive application of S.baicalensis Georgi roots,the resource of S.baicalensis Georgi has been increasingly short.The above-ground part of stems and leaves of S.baicalensis Georgi has also been gradually recognized and developed.Studies have found that the chemical constituents from stems and leaves of S.baicalensis Georgi are also a group of flavonoids with a lot of pharmacological activity and have a great application value.Based on this,the present review will be reported on the chemical constituents and application of the roots,stems and leaves of S.baicalensis Georgi.展开更多
With the wide application of traditional Chinese medicine in the world,the related reports on the toxicity of traditional Chinese medicine are increasing,which makes the safety of traditional Chinese medicine receive ...With the wide application of traditional Chinese medicine in the world,the related reports on the toxicity of traditional Chinese medicine are increasing,which makes the safety of traditional Chinese medicine receive wide attention.This paper analyzes the toxicity of traditional Chinese medicine with a fair and scientific attitude,in order to promote the benign and sustainable development of traditional Chinese medicine.展开更多
The laminated porous N-deficient g-C3N4(CN–H)is successfully synthesized by a facile two-step hydrothermal calcination method using oxalic acid-assisted melamine as the precursor.Compared with pristine g-C3N4(224μmo...The laminated porous N-deficient g-C3N4(CN–H)is successfully synthesized by a facile two-step hydrothermal calcination method using oxalic acid-assisted melamine as the precursor.Compared with pristine g-C3N4(224μmol g-1h-1),the CN–H shows superior photocatalytic hydrogen production activity(up to 728μmol g-1h-1),which is three times higher than the unmodified counterpart.To draw out the multifaceted influences of oxalic acid modification on the visible-light-induced photocatalytic activity,various techniques are utilized to investigate the formation mechanism,structural characteristics and photoelectrical properties of CN–H.The results indicate that the addition of a trace amount of oxalic acid to the precursor melamine results in a g-C3N4 structure possessing the advantage of both nitrogen defects and laminated porosity.These properties can enlarge specific surface areas of g-C3N4,enhance an efficient separating of photogenerated electron-hole pairs and extend the range of spectral response,all contributing to the enhancement of the visible-light-induced photocatalytic activity.展开更多
Multilevel phase-change memory is an attractive technology to increase storage capacity and density owing to its high-speed,scalable and non-volatile characteristics.However,the contradiction between thermal stability...Multilevel phase-change memory is an attractive technology to increase storage capacity and density owing to its high-speed,scalable and non-volatile characteristics.However,the contradiction between thermal stability and operation speed is one of key factors to restrain the development of phase-change memory.Here,N-doped Ge_(2)Sb_(2)Te_(5)-based optoelectronic hybrid memory is proposed to simultaneously implement high thermal stability and ultrafast operation speed.The picosecond laser is adopted to write/erase information based on reversible phase transition characteristics whereas the resistance is detected to perform information readout.Results show that when N content is 27.4 at.%,N-doped Ge_(2)Sb_(2)Te_(5)film possesses high ten-year data retention temperature of 175℃and low resistance drift coefficient of 0.00024 at 85℃,0.00170 at 120℃,and 0.00249 at 150℃,respectively,owing to the formation of Ge–N,Sb–N,and Te–N bonds.The SET/RESET operation speeds of the film reach 520 ps/13 ps.In parallel,the reversible switching cycle of the corresponding device is realized with the resistance ratio of three orders of magnitude.Four-level reversible resistance states induced by various crystallization degrees are also obtained together with low resistance drift coefficients.Therefore,the N-doped Ge_(2)Sb_(2)Te_(5)thin film is a promising phase-change material for ultrafast multilevel optoelectronic hybrid storage.展开更多
Based on the survey of customer satisfaction,the authors found existing problems in inspection process of the food safety monitoring laboratory A( including the whole process from receiving samples to issue of inspect...Based on the survey of customer satisfaction,the authors found existing problems in inspection process of the food safety monitoring laboratory A( including the whole process from receiving samples to issue of inspection report),and determined solutions using flow chart supplied by sig sigma( 6σ) theory. Through comparing overall effect before and after improvement of the inspection process,it is proved that 6σmanagement theory is a new effective management tool for eliminating errors,simplifying process,and meeting requirements of customers to the maximal extent.展开更多
With the vigorous development of the Chinese herbal medicine market in China,the production of high-quality authentic medicinal materials must not only ensure its unique authentic properties,but also ensure its qualit...With the vigorous development of the Chinese herbal medicine market in China,the production of high-quality authentic medicinal materials must not only ensure its unique authentic properties,but also ensure its quality and safety.This article elaborates the challenges faced by the authentic Chinese medicinal materials and gives suggestions to improve the quality system of Chinese medicinal materials.展开更多
[Objectives]The research aimed to optimize extraction technology of total flavonoids from traditional Chinese medicine Yipichou,and establish methods of extraction and content determination of its medicinal materials....[Objectives]The research aimed to optimize extraction technology of total flavonoids from traditional Chinese medicine Yipichou,and establish methods of extraction and content determination of its medicinal materials.[Methods]Using reflux extraction method,total flavonoids of Yipichou were extracted.Via single-factor test,influence of extraction method,extraction solvent concentration,extraction volume and extraction time on content of total flavonoids from Yipichou was inspected.Using orthogonal test,extraction conditions were optimized,and optimal extraction technology of total flavonoids from Yipichou was obtained.[Results]The optimal extraction process of total flavonoids from Yipichou was as below:70%of methanol,1∶40 of solid-liquid ratio,and 1.0 h of reflux extraction time.[Conclusions]In the test,total flavonoids were extracted from Yipichou,with better repeatability,and stable and feasible method,which could provide certain scientific basis for studying quality standard of this medicinal material.展开更多
Both Internet use’s impact on depression and urban-rural disparities related to information and communication technologies(ICTs)are crucial topics in the information systems discipline.So far,limited studies have exp...Both Internet use’s impact on depression and urban-rural disparities related to information and communication technologies(ICTs)are crucial topics in the information systems discipline.So far,limited studies have explored these topics in a comprehensive way.This study aims to explore the impact of Internet use on urban and rural older adults’depression and provide insights into how ICTs play positive roles in human behaviors.Based on data from the China Health and Retirement Longitudinal Study,we used the panel-data regression approach to examine the relationships between older adults’Internet use and depression,and adopted the propensity score matching and the difference-in-difference approach to test the robustness of our findings.We found that the influencing mechanisms behind Internet use’s impact on urban and rural older adults’depression are different.Internet use not only directly reduces rural older adults’depression but also indirectly reduces it via the mediation of social activity,while the impact of Internet use on urban older adults’depression is fully mediated by social activity.We found that Internet use exerts different impacts on urban and rural older adults’depression,and rural older adults can receive a greater benefit.展开更多
基金supported by the National Natural Science Foundation of China (Nos.21701107, 51672165)Natural Science Foundation of Shaanxi Province (2019JQ-018)+3 种基金Doctoral Scientific Research Startup Foundation of Shaanxi University of Science and Technology (2016QNBT-07)Platform construction Fund for Imported talent of Shaanxi University of Science and Technology (134080038)National Key R&D Program of China (2017YFB0308300)Xi’an Key Laboratory of Green Manufacture of Ceramic materials Foundation (2019220214SYS017CG039)。
文摘Developing the highly active, cost-effective, environmental-friendly, and ultra-stable nonprecious electrocatalysts for hydrogen evolution reaction(HER) is distinctly indispensable for the large-scale practical applications of hydrolytic hydrogen production. Herein, we report the synthesis of well-integrated electrode, NiV layered double hydroxide nanosheet array grown in-situ on porous nickel foam(abbreviated as in-NiV-LDH/NF) via the facile one-step hydrothermal route. Interestingly, the valence configuration of vanadium(V) sites in such NiV-LDH are well dominated by the innovative use of NF as the reducing regulator, achieving the reassembled in-NiV-LDH/NF with a high proportion of trivalent V ions(V3+), and then an enhanced intrinsic electrocatalytic HER activity. The HER testing results show that the in-NiVLDH/NF drives the current densities of 10 and 100 mA cm-2 at extremely low overpotentials of 114 and 245 mV without iR-compensation respectively, even outperforms commercial 20 wt% Pt/C at the large current density of over 80 mA cm-2 in alkaline media, as well as gives robust catalytic durability of at least 100 h in both alkaline and neutral media. More importantly, this work provides a fresh perspective for designing bimetal(oxy) hydroxides electrocatalysts with efficient hydrogen generation.
基金HBW acknowledges the funding support from“Hundred Talents Program”of Zhejiang University and International Joint Laboratory of Chinese Education Ministry on Resource Chemistry at Shanghai Normal University.
文摘A robust solid-electrolyte interphase(SEI)enabled by electrolyte additive is a promising approach to stabilize Li anode and improve Li cycling efficiency.However,the self-sacrificial nature of SEI forming additives limits their capability to stabilize Li anode for long-term cycling.Herein,we demonstrate nanocapsules made from metal–organic frameworks for sustained release of LiNO3 as surface passivation additive in commercial carbonate-based electrolyte.The nanocapsules can offer over 10 times more LiNO3 than the solubility of LiNO3.Continuous supply of LiNO3 by nanocapsules forms a nitride-rich SEI layer on Li anode and persistently remedies SEI during prolonged cycling.As a result,lifespan of thin Li anode in 50μm,which experiences drastic volume change and repeated SEI formation during cycling,has been notably improved.By pairing with an industry-level thick LiCoO2 cathode,practical Li-metal full cell demonstrates a remarkable capacity retention of 90%after 240 cycles,in contrast to fast capacity drop after 60 cycles in LiNO3 saturated electrolyte.
基金funded by the National Natural Science Foundation of China(No.42007182)the self made experimental teaching instruments of Nanjing Forestry University in 2021(nlzzyq202127).
文摘Background:Water migration and use are important processes in trees.However,it is possible to overestimate transpiration by equating the water absorbed through the plant roots to that diffused back to the atmosphere through stomatal transpiration.Therefore,it is necessary to quantify the water transpired and stored in plants.Method:The δ^(2)H/δ^(18)O technique and heat ratio method were used to explore the water usage of coniferous and broad-leaved tree species,including the proportions of water used for transpiration and water storage.Results:Platycladus orientalis and Quercus variabilis had strong plasticity in their water usage from different sources.Platycladus orientalis primarily used groundwater(30.5%)and the 60-100-cm soil layer(21.6%)throughout the experimental period and was sensitive to precipitation,absorbing water from the 0-20-cm layer(26.6%)during the rainy season.Quercus variabilis absorbed water from all sources(15.7%-36.5%)except from the 40-60-cm soil layer during the dry season.In addition,it did not change its water source but increased its groundwater uptake during the rainy season.The annual mean water fluxes of P.orientalis and Q.variabilis were 374.69 and 469.50 mm·year−1,with 93.49% and 93.91% of the water used for transpiration,respectively.However,nocturnal sap flow in P.orientalis and Q.variabilis was mainly used for water storage in the trunk rather than transpiration,which effectively alleviated drought stress and facilitated the transport of nutrients.Conclusions:The water stored in both species comprised 6%-7% of the total water fluxes and,therefore,should be considered in water balance models.
基金Supported by the National Natural Science Foundation of China(51473013)
文摘The hydrophobically modi fied ceramic membranes have great potential for energy-ef ficient membrane distillation.In this work,flat-sheet ceramic membranes with a superhydrophobic surface were fabricated by grafting 1H,1H,2H,2H-per fluorooctyltrichlorosilane or 1H,1H,2H,2H-per fluorodecyltriethoxysilane and followed by ultraviolet irradiation.The surface water contact angle was improved from 46° of original ceramic membrane to 159°,which exhibited a stable and excellent superhydrophobic effect.The modi fied membranes showed a high flux of 27.28 kg·m^(-2)·h^(-1) and simultaneously maintained an excellent retention rate of 99.99%,when used in vacuum membrane distillation process for treatment of a 1 wt% NaCl(75 °C) aqueous solution.These results suggested that superhydrophobic modi fication of ceramic surface is a facile and cost-effective way to achieve higher membrane distillation performance.The superhydrophobically-modi fied ceramic membrane with an excellent desalination capacity would show considerable potential in practical membrane distillation utilizations.
基金supported in part by the National Natural Science Foundation of China under Grant 61461013in part of the Natural Science Foundation of Guangxi Province under Grant 2018GXNSFAA281179in part of the Dean Project of Guangxi Key Laboratory of Wireless Broadband Communication and Signal Processing under Grant GXKL06160103.
文摘In this study,we developed a system based on deep space–time neural networks for gesture recognition.When users change or the number of gesture categories increases,the accuracy of gesture recognition decreases considerably because most gesture recognition systems cannot accommodate both user differentiation and gesture diversity.To overcome the limitations of existing methods,we designed a onedimensional parallel long short-term memory–fully convolutional network(LSTM–FCN)model to extract gesture features of different dimensions.LSTM can learn complex time dynamic information,whereas FCN can predict gestures efficiently by extracting the deep,abstract features of gestures in the spatial dimension.In the experiment,50 types of gestures of five users were collected and evaluated.The experimental results demonstrate the effectiveness of this system and robustness to various gestures and individual changes.Statistical analysis of the recognition results indicated that an average accuracy of approximately 98.9% was achieved.
基金the National Natural Science Foundation of China(Grant Nos.21773291,61904118,and 22002102)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20190935 and BK20190947)+3 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant Nos.19KJA210005,19KJB510012,19KJB120005,and 19KJB430034)the Fund from the Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices(Grant No.SZS201812)the Science Fund from the Jiangsu Key Laboratory for Environment Functional Materialsthe State Key Laboratory of Transducer Technology,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences.
文摘The era of information explosion is coming and information need to be continuously stored and randomly accessed over long-term periods,which constitute an insurmountable challenge for existing data centers.At present,computing devices use the von Neumann architecture with separate computing and memory units,which exposes the shortcomings of“memory bottleneck”.Nonvolatile memristor can realize data storage and in-memory computing at the same time and promises to overcome this bottleneck.Phase-change random access memory(PCRAM)is called one of the best solutions for next generation non-volatile memory.Due to its high speed,good data retention,high density,low power consumption,PCRAM has the broad commercial prospects in the in-memory computing application.In this review,the research progress of phase-change materials and device structures for PCRAM,as well as the most critical performances for a universal memory,such as speed,capacity,and power consumption,are reviewed.By comparing the advantages and disadvantages of phase-change optical disk and PCRAM,a new concept of optoelectronic hybrid storage based on phase-change material is proposed.Furthermore,its feasibility to replace existing memory technologies as a universal memory is also discussed as well.
基金the funding support from “Hundred Talents Program” of Zhejiang University and International Joint Laboratory of Chinese Education Ministry on Resource Chemistry at Shanghai Normal Universitythe National Natural Science Foundation of China (No. 91961126) for funding this work。
文摘High-energy Li-metal batteries (LMBs) suffer from short cycle life and safety issues due to severe parasitic reactions and dendrite growth of Li metal anode (LMA) in liquid electrolytes [1–3].It is generally believed that replacing liquid electrolytes with solidstate electrolytes (SSEs) would be a feasible approach for practical LMBs [4,5]. Conventional SSEs including ceramic and polymer electrolytes have been studied for decades.
基金Supported by Funding Project of Hebei Provincial Department of Education(ZD20131022,ZD2019057)First Batch Financial Support for Hebei Provincial Hundred Outstanding Innovative Talents in China.
文摘The root of Scutellaria baicalensis Georgi is traditionally used as medicine,and it has been confirmed that S.baicalensis Georgi has flavonoid chemical constituents,pharmacological activity and cosmetic efficacy.With the extensive application of S.baicalensis Georgi roots,the resource of S.baicalensis Georgi has been increasingly short.The above-ground part of stems and leaves of S.baicalensis Georgi has also been gradually recognized and developed.Studies have found that the chemical constituents from stems and leaves of S.baicalensis Georgi are also a group of flavonoids with a lot of pharmacological activity and have a great application value.Based on this,the present review will be reported on the chemical constituents and application of the roots,stems and leaves of S.baicalensis Georgi.
基金Hebei Provincial Natural Science Foundation(C2009001007,H2014406048,H2019406063)Hebei Provincial Administration of Traditional Chinese Medicine(05027&2014062)+1 种基金Hebei Provincial Education Department(ZD20131022,ZD2019057)Hebei Provincial Hundred Outstanding Innovated Talents(First Batch)Key Subject Construction Project of Hebei Provincial College of China.
文摘With the wide application of traditional Chinese medicine in the world,the related reports on the toxicity of traditional Chinese medicine are increasing,which makes the safety of traditional Chinese medicine receive wide attention.This paper analyzes the toxicity of traditional Chinese medicine with a fair and scientific attitude,in order to promote the benign and sustainable development of traditional Chinese medicine.
基金financial support by the National Natural Science Foundation of China (Project 21373054)the Natural Science Foundation of Shanghai Science and Technology Committee (08DZ2270500)
文摘The laminated porous N-deficient g-C3N4(CN–H)is successfully synthesized by a facile two-step hydrothermal calcination method using oxalic acid-assisted melamine as the precursor.Compared with pristine g-C3N4(224μmol g-1h-1),the CN–H shows superior photocatalytic hydrogen production activity(up to 728μmol g-1h-1),which is three times higher than the unmodified counterpart.To draw out the multifaceted influences of oxalic acid modification on the visible-light-induced photocatalytic activity,various techniques are utilized to investigate the formation mechanism,structural characteristics and photoelectrical properties of CN–H.The results indicate that the addition of a trace amount of oxalic acid to the precursor melamine results in a g-C3N4 structure possessing the advantage of both nitrogen defects and laminated porosity.These properties can enlarge specific surface areas of g-C3N4,enhance an efficient separating of photogenerated electron-hole pairs and extend the range of spectral response,all contributing to the enhancement of the visible-light-induced photocatalytic activity.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62205231 and 22002102)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX223271)Jiangsu Key Laboratory for Environment Functional Materials。
文摘Multilevel phase-change memory is an attractive technology to increase storage capacity and density owing to its high-speed,scalable and non-volatile characteristics.However,the contradiction between thermal stability and operation speed is one of key factors to restrain the development of phase-change memory.Here,N-doped Ge_(2)Sb_(2)Te_(5)-based optoelectronic hybrid memory is proposed to simultaneously implement high thermal stability and ultrafast operation speed.The picosecond laser is adopted to write/erase information based on reversible phase transition characteristics whereas the resistance is detected to perform information readout.Results show that when N content is 27.4 at.%,N-doped Ge_(2)Sb_(2)Te_(5)film possesses high ten-year data retention temperature of 175℃and low resistance drift coefficient of 0.00024 at 85℃,0.00170 at 120℃,and 0.00249 at 150℃,respectively,owing to the formation of Ge–N,Sb–N,and Te–N bonds.The SET/RESET operation speeds of the film reach 520 ps/13 ps.In parallel,the reversible switching cycle of the corresponding device is realized with the resistance ratio of three orders of magnitude.Four-level reversible resistance states induced by various crystallization degrees are also obtained together with low resistance drift coefficients.Therefore,the N-doped Ge_(2)Sb_(2)Te_(5)thin film is a promising phase-change material for ultrafast multilevel optoelectronic hybrid storage.
基金Supported by Project of General Administration of Quality Supervision,Inspection and Quarantine of People's Republic of China(2011K067)
文摘Based on the survey of customer satisfaction,the authors found existing problems in inspection process of the food safety monitoring laboratory A( including the whole process from receiving samples to issue of inspection report),and determined solutions using flow chart supplied by sig sigma( 6σ) theory. Through comparing overall effect before and after improvement of the inspection process,it is proved that 6σmanagement theory is a new effective management tool for eliminating errors,simplifying process,and meeting requirements of customers to the maximal extent.
基金Hebei Provincial Natural Science Foundation(No.C2009001007,H2014406048,H2019406063)Hebei Provincial Administration of Traditional Chinese Medicine(No.05027,2014062)+4 种基金Hebei Provincial Education Department(No.ZD20131022,ZD2019057)Hebei Provincial Hundred Outstanding Innovated TalentsFirst Batch and the Key Subject Construction Project of Hebei Provincial CollegeKey Development Subject of Pharmacology of Traditional Chinese Medicine of Chengde Medical CollegeScience and Technology Innovation Team Construction Project of Chengde Medical College,China。
文摘With the vigorous development of the Chinese herbal medicine market in China,the production of high-quality authentic medicinal materials must not only ensure its unique authentic properties,but also ensure its quality and safety.This article elaborates the challenges faced by the authentic Chinese medicinal materials and gives suggestions to improve the quality system of Chinese medicinal materials.
基金Supported by Preparation Quality Improvement Project of Zhuang and Yao Medicine Hospital,Administration of Traditional Chinese Medicine,Guangxi Zhuang Autonomous Region(GZZJ202013,GZZJ202015)Project of Improving the Basic Scientific Research Ability of Young and Middle-aged Teachers in Guangxi Colleges and Universities in 2019(2019KY0341)+2 种基金Opening Project of Guangxi Zhuang and Yao Medicine Key Laboratory(GXZYKF2020A-08)Research Project of Guangxi International Zhuang Medicine Hospital in 2020(GZ202001)Youth Fund Project of Guangxi University of Chinese Medicine in 2019(2019QN036).
文摘[Objectives]The research aimed to optimize extraction technology of total flavonoids from traditional Chinese medicine Yipichou,and establish methods of extraction and content determination of its medicinal materials.[Methods]Using reflux extraction method,total flavonoids of Yipichou were extracted.Via single-factor test,influence of extraction method,extraction solvent concentration,extraction volume and extraction time on content of total flavonoids from Yipichou was inspected.Using orthogonal test,extraction conditions were optimized,and optimal extraction technology of total flavonoids from Yipichou was obtained.[Results]The optimal extraction process of total flavonoids from Yipichou was as below:70%of methanol,1∶40 of solid-liquid ratio,and 1.0 h of reflux extraction time.[Conclusions]In the test,total flavonoids were extracted from Yipichou,with better repeatability,and stable and feasible method,which could provide certain scientific basis for studying quality standard of this medicinal material.
基金Guangdong Provincial Science and Technology Research Project(Grant Nos.:2019A101002110 and 2020ST079)Special Projects in Key Areas of Guangdong Provincial Department of Education(Grant No.:2021ZDZX3002)Open Foundation of STU Research Institute for Guangdong-Taiwan Business Cooperation,and STU Scientific Research Initiation Grant(Grant No.:STF18011)for providing funding to support this study.
文摘Both Internet use’s impact on depression and urban-rural disparities related to information and communication technologies(ICTs)are crucial topics in the information systems discipline.So far,limited studies have explored these topics in a comprehensive way.This study aims to explore the impact of Internet use on urban and rural older adults’depression and provide insights into how ICTs play positive roles in human behaviors.Based on data from the China Health and Retirement Longitudinal Study,we used the panel-data regression approach to examine the relationships between older adults’Internet use and depression,and adopted the propensity score matching and the difference-in-difference approach to test the robustness of our findings.We found that the influencing mechanisms behind Internet use’s impact on urban and rural older adults’depression are different.Internet use not only directly reduces rural older adults’depression but also indirectly reduces it via the mediation of social activity,while the impact of Internet use on urban older adults’depression is fully mediated by social activity.We found that Internet use exerts different impacts on urban and rural older adults’depression,and rural older adults can receive a greater benefit.