Using non-toxic,low-volatile glyoxal to completely replace formaldehyde for preparing urea-glyoxal(UG)resin adhesive is a hot research topic that could be of great interest for the wood industry.However,urea-glyoxal(U...Using non-toxic,low-volatile glyoxal to completely replace formaldehyde for preparing urea-glyoxal(UG)resin adhesive is a hot research topic that could be of great interest for the wood industry.However,urea-glyoxal(UG)resins prepared by just using glyoxal instead of formaldehyde usually yields a lower degree of polymerization.This results in a poorer bonding performance and water resistance of UG resins.A good solution is to pre-react urea to preform polyurea molecules presenting already a certain degree of polymerization,and then to condense these with glyoxal to obtain a novel UG resin.Therefore,in this present work,the urea was reacted with hexamethylene diamine to form a polyurea named HU,and then this was used to react it with different amounts of glyoxal to synthesize hexamethylenediamine-urea-glyoxal(HUG)polycondensation resins,and to use this for bonding plywood.The results show that the glyoxal can well react with HU polyuria via addition and schiff base reaction,and also the HUG resin exhibits excellent bonding strength and water resistance.The shear strength of the plywood bonded with this HUG at 160°C hot press temperature as high as 1.93 MPa,2.16 MPa and 1.61 MPa,respectively,which meets the requirement of the China national standard GB/T 9846-2015(≥0.7 MPa),and can be a good choice as a wood adhesive for industrial application.展开更多
Soy protein adhesives are currently a hot research topic in the wood panels industry for the abundant raw material reserves,reasonable price and outstanding environmental features.But their poor water resistance,low b...Soy protein adhesives are currently a hot research topic in the wood panels industry for the abundant raw material reserves,reasonable price and outstanding environmental features.But their poor water resistance,low bonding strength and intolerance to mold are major drawbacks,so that proper modification before use is essential.Glutaraldehyde is one of the more apt cross-linking agents for soybean protein adhesives,which can effectively improve the bonding strength and water resistance of the adhesive.Equally,glutaraldehyde is also an efficient and broad-spectrum fungicide that can significantly improve the anti-fungal properties of a soy protein adhesive.In the work presented here,matrix assisted laser desorption ionization(MALDI-ToF)mass spectrometry and Fourier transform infrared spectroscopy techniques were used to analyze the reaction mechanism of glutaraldehyde cross-linking soybean protein.The results confirmed the reaction of the aldehyde group with amino groups of the side chains and the amide groups of the peptide linkages constituting the skeletal chain of the protein.The laboratory plywood and particleboard bonded with glutaraldehyde-soy bean protein adhesives were prepared to determine the adhesive bonding properties,the dry strength,24 h cold water soaking wet strength and 3 h hot water(63°C)wet strength of plywood were 2.03,1.13 and 0.75 MPa,respectively,which satisfied the requirements of industrial production.展开更多
In this work,a novel bamboo-like carbon nanotubes@Sn4P3@carbon(BLCNTs@Sn_(4)P_(3)@C)coaxial nanotubes are designed and prepared using a newly developed hydrothermal method followed by a phophidation process.The prepar...In this work,a novel bamboo-like carbon nanotubes@Sn4P3@carbon(BLCNTs@Sn_(4)P_(3)@C)coaxial nanotubes are designed and prepared using a newly developed hydrothermal method followed by a phophidation process.The prepared Sn_(4)P_(3) nanoparticles are uniformly coated and wrapped on the one-dimensional(1D)bamboo-like CNTs,which is covered by a uniform carbon layer to form a sandwich-like structure with Sn_(4)P_(3) in between.The inner CNT and outer carbon can effectively maintain the structural stability and serve as the good electron conductors.Additionally,the outer carbon coating layer can effectively keep BLCNTs@Sn_(4)P_(3)@C nanotubes separate each other,preventing aggregation of Sn_(4)P_(3) during charge/discharge when this material is used as anode for sodium ion batteries.The anode of BLCNTs@Sn_(4)P_(3)@C shows excellent reversible capacity and a long cycling of over 2000 cycles.The unique design of coaxial nanotubes is greatly beneficial to the electrochemical performance of Sn_(4)P_(3) for sodium ion storage.展开更多
Emerging and recurrent infectious diseases caused by human coronaviruses(HCoVs)continue to pose a significant threat to global public health security.In light of this ongoing threat,the development of a broad-spectrum...Emerging and recurrent infectious diseases caused by human coronaviruses(HCoVs)continue to pose a significant threat to global public health security.In light of this ongoing threat,the development of a broad-spectrum drug to combat HCoVs is an urgently priority.Herein,we report a series of anti-pan-coronavirus ssDNA aptamers screened using Systematic Evolution of Ligands by Exponential Enrichment(SELEX).These aptamers have nanomolar affinity with the nucleocapsid protein(NP)of Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)and also show excellent binding efficiency to the N proteins of both SARS,MERS,HCoV-OC43 and-NL63 with affinity KD values of 1.31 to 135.36 nM.Such aptamer-based therapeutics exhibited potent antiviral activity against both the authentic SARS-CoV-2 prototype strain and the Omicron variant(BA.5)with EC50 values at 2.00 nM and 41.08 nM,respectively.The protein docking analysis also evidenced that these aptamers exhibit strong affinities for N proteins of pan-coronavirus and other HCoVs(−229E and-HKU1).In conclusion,we have identified six aptamers with a high pan-coronavirus antiviral activity,which could potentially serve as an effective strategy for preventing infections by unknown coronaviruses and addressing the ongoing global health threat.展开更多
With the advent of the“Big Data Era”,improving data storage density and computation speed has become more and more urgent due to the rapid growth in different types of data.Flash memory with a floating gate(FG)struc...With the advent of the“Big Data Era”,improving data storage density and computation speed has become more and more urgent due to the rapid growth in different types of data.Flash memory with a floating gate(FG)structure is attracting great attention owing to its advantages of miniaturization,low power consumption and reli-able data storage,which is very effective in solving the problems of large data capacity and high integration density.Meanwhile,the FG memory with charge storage principle can simulate synaptic plasticity perfectly,breaking the traditional von Neumann computing ar-chitecture and can be used as an artificial synapse for neuromorphic computations inspired by the human brain.Among many candidate materials for manufacturing devices,van der Waals(vdW)materials have attracted widespread attention due to their atomic thickness,high mobility,and sustainable miniaturization properties.Owing to the arbitrary stacking ability,vdW heterostructure combines rich physics and potential 3D integration,opening up various possibilities for new functional integrated devices with low power consumption and flexible applications.This paper provides a comprehensive review of memory devices based on vdW materials with FG structure,including the working principles and typical structures of FG structure devices,with a focus on the introduction of various highperformance FG memories and their versatile applications in neuro-morphic computing.Finally,the challenges of neuromorphic devices based on FG structures are also discussed.This review will shed light on the design and fabrication of vdW material-based memory devices with FG engineering,helping to promote the development of practical and promising neuromorphic computing.展开更多
Rechargeable aqueous zinc-ion batteries(ZIBs)have gained extensive attention owing to the high safety,low cost,and high power/energy densities.But unfortunately the ZIBs universally suffer from the highly damaging ser...Rechargeable aqueous zinc-ion batteries(ZIBs)have gained extensive attention owing to the high safety,low cost,and high power/energy densities.But unfortunately the ZIBs universally suffer from the highly damaging series of side reactions,majorly including the insulating products formation,dendritic growth of zinc,and hydrogen evolution.To date there are few reports on the effective strategy that can solve the problems at the same time.Here we propose a novel hybrid electrolyte with Al^(3+)as additive to construct an aqueous ZIB composed of metallic zinc anode and K_(0.51)V_(2)O_(5)(KVO)nanoplate cathode.The highly reversible multistep K^(+)/Zn^(2+)-ions co-insertion/extraction in the lamellar structure with large interlayer spacing is clearly evidenced by systematical characterizations.In the presence of Al^(3+),the insulating basic zinc salts on the cathode surface have been reduced greatly,and the electrochemical potential window has been significantly expanded from 3 to 4.35 V.More interestingly,the Al^(3+)acts as a dopant embedded into the lattice that strengthens the crystal structure.Benefits from the suppressed zinc dendrite growth,the symmetrical Zn/Zn battery exhibited a satisfactory cycling life over 1,500 h at a high rate of 3 mA·cm^(-2)in the hybrid electrolyte.As a result,the Zn/KVO batteries delivered a high specific capacity of 210 mAh·g^(-1)and retained high capacity retention of 91%after 1,600 h at a low current of 100 mA·g^(-1).展开更多
Pristine LiNi0.5Mnl.5O4 and FePO4-coated one with Fd-3m space groups were prepared by a sol-gel method. The structure and performance were studied by X-ray diffraction (XRD) rietveld refinement, scanning electron mi...Pristine LiNi0.5Mnl.5O4 and FePO4-coated one with Fd-3m space groups were prepared by a sol-gel method. The structure and performance were studied by X-ray diffraction (XRD) rietveld refinement, scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), energy dispersive spectrometer (EDS) mapping, electrochemical impedance spectroscopy (EIS) and charge- discharge tests, respectively. The lattice parameters of all samples almost remain the same from the Rietveld refinement, revealing that the crystallographic structure has no obvious difference between pris- tine LiNi0.5Mn1.5O4 and FePO4-coated one. All materials show similar morphologies with uniform particle distribution with small particle size, and FePO4 coating does not affect the morphology of LiNi0.5Mnl05O 4 material. EDS mapping and HRTEM show that FePO4 may be successfully wrapped around the surfaces of LiNio.sMnl.s04 particles, and provides an effective coating layer between the electrolyte and the surface of LiNi0.5Mn1.5O4 particles. FePO4 (1 wt%)-coated LiNio.sMnl.504 cathode shows the highest discharge capac- ity at high rate (2 C) among all samples. After 80 cycles, the reversible discharge capacity of FePO4 (1 wt%) coated LiNi0.5Mn0.5O4 is 117 mAh g^-1, but the pristine one only has 50 mAh g^-1. FeP04 coating is an effec- tive and controllable way to stabilize the LiNi0.5Mn1.5O4/electrolyte interface, and avoids the direct con- tact between LiNi0.5Mn1.5O4 powders and electrolyte, then suppresses the side reactions and enhances the electrochemical performance of the LiNi0.5Mn1.5O4.展开更多
基金supported by the Yunnan Provincial Natural Science Foundation (202201AU070222,202201AT070045,202101BD070001-074)Scientific Research Fund Project of Yunnan Provincial Department of Education (2022J0490)financed by the 111 Project (D21027).
文摘Using non-toxic,low-volatile glyoxal to completely replace formaldehyde for preparing urea-glyoxal(UG)resin adhesive is a hot research topic that could be of great interest for the wood industry.However,urea-glyoxal(UG)resins prepared by just using glyoxal instead of formaldehyde usually yields a lower degree of polymerization.This results in a poorer bonding performance and water resistance of UG resins.A good solution is to pre-react urea to preform polyurea molecules presenting already a certain degree of polymerization,and then to condense these with glyoxal to obtain a novel UG resin.Therefore,in this present work,the urea was reacted with hexamethylene diamine to form a polyurea named HU,and then this was used to react it with different amounts of glyoxal to synthesize hexamethylenediamine-urea-glyoxal(HUG)polycondensation resins,and to use this for bonding plywood.The results show that the glyoxal can well react with HU polyuria via addition and schiff base reaction,and also the HUG resin exhibits excellent bonding strength and water resistance.The shear strength of the plywood bonded with this HUG at 160°C hot press temperature as high as 1.93 MPa,2.16 MPa and 1.61 MPa,respectively,which meets the requirement of the China national standard GB/T 9846-2015(≥0.7 MPa),and can be a good choice as a wood adhesive for industrial application.
基金supported by the National Natural Science Foundation of China(31660176)the Yunnan Provincial Natural Science Foundation(202201AU070222)and Scientific Research Fund Project of Yunnan Provincial Department of Education(2022J0490)+1 种基金financed by the ERA-CoBioTech Project WooBAdh(Environmentally-friendly bioadhesives from renewable resources)by the Slovenian Ministry of Education.Science and Sport and the Slovenian Research Agency within the Framework of the Program P4-0015.
文摘Soy protein adhesives are currently a hot research topic in the wood panels industry for the abundant raw material reserves,reasonable price and outstanding environmental features.But their poor water resistance,low bonding strength and intolerance to mold are major drawbacks,so that proper modification before use is essential.Glutaraldehyde is one of the more apt cross-linking agents for soybean protein adhesives,which can effectively improve the bonding strength and water resistance of the adhesive.Equally,glutaraldehyde is also an efficient and broad-spectrum fungicide that can significantly improve the anti-fungal properties of a soy protein adhesive.In the work presented here,matrix assisted laser desorption ionization(MALDI-ToF)mass spectrometry and Fourier transform infrared spectroscopy techniques were used to analyze the reaction mechanism of glutaraldehyde cross-linking soybean protein.The results confirmed the reaction of the aldehyde group with amino groups of the side chains and the amide groups of the peptide linkages constituting the skeletal chain of the protein.The laboratory plywood and particleboard bonded with glutaraldehyde-soy bean protein adhesives were prepared to determine the adhesive bonding properties,the dry strength,24 h cold water soaking wet strength and 3 h hot water(63°C)wet strength of plywood were 2.03,1.13 and 0.75 MPa,respectively,which satisfied the requirements of industrial production.
基金supported by National Natural Science Foundation of China(51772051,51872071)Natural Science Foundation of Guangdong Province(2016A030310127)+3 种基金Support Funding for Innovation Projects for Overseas Students in Anhui Province(2020LCX031)supported by the Foundation of High-level Talents(GB200902-30,No.196100041018)the Foundation of Regular Research Team(TDYB2019007,No.196100043028)the Foundation of Doctor'sWorkstation of MCNAIR NEW POWER CO.,LTD(GC200104-40,No.186100030017)at Dongguan University of Technology.
文摘In this work,a novel bamboo-like carbon nanotubes@Sn4P3@carbon(BLCNTs@Sn_(4)P_(3)@C)coaxial nanotubes are designed and prepared using a newly developed hydrothermal method followed by a phophidation process.The prepared Sn_(4)P_(3) nanoparticles are uniformly coated and wrapped on the one-dimensional(1D)bamboo-like CNTs,which is covered by a uniform carbon layer to form a sandwich-like structure with Sn_(4)P_(3) in between.The inner CNT and outer carbon can effectively maintain the structural stability and serve as the good electron conductors.Additionally,the outer carbon coating layer can effectively keep BLCNTs@Sn_(4)P_(3)@C nanotubes separate each other,preventing aggregation of Sn_(4)P_(3) during charge/discharge when this material is used as anode for sodium ion batteries.The anode of BLCNTs@Sn_(4)P_(3)@C shows excellent reversible capacity and a long cycling of over 2000 cycles.The unique design of coaxial nanotubes is greatly beneficial to the electrochemical performance of Sn_(4)P_(3) for sodium ion storage.
基金supported by the National Key Research&Development Program of China(2021YFA1201000,2021YFC2302400,2023YFC2606004)the Guangxi Science and Technology Development Program(AB20117001)+5 种基金the National Natural Science Foundation of China(82204263,32171394,32001008)the Fundamental Research Funds for the Central Universities(3332022055,2022CX01013)the China Postdoctoral Science Foundation(2022M720438)the Beijing Nova Program(Interdisciplinary Cooperation Project)from Beijing Municipal Science&Technology Commission(20220484207)We knowledge the Beijing Institute of Technology Research Fund Program for Young Scholars(XSQD-6120220072)We thank the Biological and Medical Engineering Core Facilities,and Analysis&Testing Center,Beijing Institute of Technology for supporting experimental equipment,and staffs for valuable help with technical support.
文摘Emerging and recurrent infectious diseases caused by human coronaviruses(HCoVs)continue to pose a significant threat to global public health security.In light of this ongoing threat,the development of a broad-spectrum drug to combat HCoVs is an urgently priority.Herein,we report a series of anti-pan-coronavirus ssDNA aptamers screened using Systematic Evolution of Ligands by Exponential Enrichment(SELEX).These aptamers have nanomolar affinity with the nucleocapsid protein(NP)of Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)and also show excellent binding efficiency to the N proteins of both SARS,MERS,HCoV-OC43 and-NL63 with affinity KD values of 1.31 to 135.36 nM.Such aptamer-based therapeutics exhibited potent antiviral activity against both the authentic SARS-CoV-2 prototype strain and the Omicron variant(BA.5)with EC50 values at 2.00 nM and 41.08 nM,respectively.The protein docking analysis also evidenced that these aptamers exhibit strong affinities for N proteins of pan-coronavirus and other HCoVs(−229E and-HKU1).In conclusion,we have identified six aptamers with a high pan-coronavirus antiviral activity,which could potentially serve as an effective strategy for preventing infections by unknown coronaviruses and addressing the ongoing global health threat.
基金supported by Beijing Natural Science Foundation(Grant No.Z210006)the National Key Research and Develop-ment Program of China(Grant No.2022YFA1405600)the National Nat-ural Science Foundation of China(Grant No.12104051).
文摘With the advent of the“Big Data Era”,improving data storage density and computation speed has become more and more urgent due to the rapid growth in different types of data.Flash memory with a floating gate(FG)structure is attracting great attention owing to its advantages of miniaturization,low power consumption and reli-able data storage,which is very effective in solving the problems of large data capacity and high integration density.Meanwhile,the FG memory with charge storage principle can simulate synaptic plasticity perfectly,breaking the traditional von Neumann computing ar-chitecture and can be used as an artificial synapse for neuromorphic computations inspired by the human brain.Among many candidate materials for manufacturing devices,van der Waals(vdW)materials have attracted widespread attention due to their atomic thickness,high mobility,and sustainable miniaturization properties.Owing to the arbitrary stacking ability,vdW heterostructure combines rich physics and potential 3D integration,opening up various possibilities for new functional integrated devices with low power consumption and flexible applications.This paper provides a comprehensive review of memory devices based on vdW materials with FG structure,including the working principles and typical structures of FG structure devices,with a focus on the introduction of various highperformance FG memories and their versatile applications in neuro-morphic computing.Finally,the challenges of neuromorphic devices based on FG structures are also discussed.This review will shed light on the design and fabrication of vdW material-based memory devices with FG engineering,helping to promote the development of practical and promising neuromorphic computing.
基金the National Natural Science Foundation of China(Nos.91963210,U1801255,and 51872340)Guangdong Provincial Natural Science Foundation,China(No.2021A1515010143).
文摘Rechargeable aqueous zinc-ion batteries(ZIBs)have gained extensive attention owing to the high safety,low cost,and high power/energy densities.But unfortunately the ZIBs universally suffer from the highly damaging series of side reactions,majorly including the insulating products formation,dendritic growth of zinc,and hydrogen evolution.To date there are few reports on the effective strategy that can solve the problems at the same time.Here we propose a novel hybrid electrolyte with Al^(3+)as additive to construct an aqueous ZIB composed of metallic zinc anode and K_(0.51)V_(2)O_(5)(KVO)nanoplate cathode.The highly reversible multistep K^(+)/Zn^(2+)-ions co-insertion/extraction in the lamellar structure with large interlayer spacing is clearly evidenced by systematical characterizations.In the presence of Al^(3+),the insulating basic zinc salts on the cathode surface have been reduced greatly,and the electrochemical potential window has been significantly expanded from 3 to 4.35 V.More interestingly,the Al^(3+)acts as a dopant embedded into the lattice that strengthens the crystal structure.Benefits from the suppressed zinc dendrite growth,the symmetrical Zn/Zn battery exhibited a satisfactory cycling life over 1,500 h at a high rate of 3 mA·cm^(-2)in the hybrid electrolyte.As a result,the Zn/KVO batteries delivered a high specific capacity of 210 mAh·g^(-1)and retained high capacity retention of 91%after 1,600 h at a low current of 100 mA·g^(-1).
基金supported by the National Natural Science Foundation of China(51404002)Anhui Provincial Natural Science Foundation(1508085MB25)+1 种基金Natural Science Foundation of Guangdong Province(2016A030310127)Anhui Provincial Science Fund for Excellent Young Scholars(gxyqZD2016066)
文摘Pristine LiNi0.5Mnl.5O4 and FePO4-coated one with Fd-3m space groups were prepared by a sol-gel method. The structure and performance were studied by X-ray diffraction (XRD) rietveld refinement, scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), energy dispersive spectrometer (EDS) mapping, electrochemical impedance spectroscopy (EIS) and charge- discharge tests, respectively. The lattice parameters of all samples almost remain the same from the Rietveld refinement, revealing that the crystallographic structure has no obvious difference between pris- tine LiNi0.5Mn1.5O4 and FePO4-coated one. All materials show similar morphologies with uniform particle distribution with small particle size, and FePO4 coating does not affect the morphology of LiNi0.5Mnl05O 4 material. EDS mapping and HRTEM show that FePO4 may be successfully wrapped around the surfaces of LiNio.sMnl.s04 particles, and provides an effective coating layer between the electrolyte and the surface of LiNi0.5Mn1.5O4 particles. FePO4 (1 wt%)-coated LiNio.sMnl.504 cathode shows the highest discharge capac- ity at high rate (2 C) among all samples. After 80 cycles, the reversible discharge capacity of FePO4 (1 wt%) coated LiNi0.5Mn0.5O4 is 117 mAh g^-1, but the pristine one only has 50 mAh g^-1. FeP04 coating is an effec- tive and controllable way to stabilize the LiNi0.5Mn1.5O4/electrolyte interface, and avoids the direct con- tact between LiNi0.5Mn1.5O4 powders and electrolyte, then suppresses the side reactions and enhances the electrochemical performance of the LiNi0.5Mn1.5O4.