Let M be a complete, simply connected Riemannian manifold with negative curvature. We obtain an interpolation of Hardy inequality and Moser-Trudinger inequality on M. Furthermore, the constant we obtain is sharp.
Let x=(x',x'')with x'∈Rk and x''∈R^N-k andΩbe a x'-symmetric and bounded domain in R^N(N≥2).We show that if 0≤a≤k-2,then there exists a positive constant C>0 such that for all x...Let x=(x',x'')with x'∈Rk and x''∈R^N-k andΩbe a x'-symmetric and bounded domain in R^N(N≥2).We show that if 0≤a≤k-2,then there exists a positive constant C>0 such that for all x'-symmetric function u∈C0^∞(Ω)with∫Ω|■u(x)|^N-a|x'|^-adx≤1,the following uniform inequality holds1/∫Ω|x|^-adx∫Ωe^βa|u|N-a/N-a-1|x'|^-adx≤C,whereβa=(N-a)(2πN/2Γ(k-a/2)Γ(k/2)/Γ(k/2)r(N-a/2))1/N-a-1.Furthermore,βa can not be replaced by any greater number.As the application,we obtain some weighted Trudinger–Moser inequalities for x-symmetric function on Grushin space.展开更多
Let G be a simple Lie group of real rank one and N be in the Iwasawa decomposition of G. Under the assumption of some symmetries, we obtain an existent result for the nonlinear equation △NU + (1 + ∈K(x, z))u2...Let G be a simple Lie group of real rank one and N be in the Iwasawa decomposition of G. Under the assumption of some symmetries, we obtain an existent result for the nonlinear equation △NU + (1 + ∈K(x, z))u2*-1 = 0 on N, which generalizes the result of Malchiodi and Uguzzoni to the Kohn's subelliptic context on N in presence of symmetry.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.11201346)
文摘Let M be a complete, simply connected Riemannian manifold with negative curvature. We obtain an interpolation of Hardy inequality and Moser-Trudinger inequality on M. Furthermore, the constant we obtain is sharp.
基金Supported by the National Natural Science Foundation of China(Grant No.11201346)。
文摘Let x=(x',x'')with x'∈Rk and x''∈R^N-k andΩbe a x'-symmetric and bounded domain in R^N(N≥2).We show that if 0≤a≤k-2,then there exists a positive constant C>0 such that for all x'-symmetric function u∈C0^∞(Ω)with∫Ω|■u(x)|^N-a|x'|^-adx≤1,the following uniform inequality holds1/∫Ω|x|^-adx∫Ωe^βa|u|N-a/N-a-1|x'|^-adx≤C,whereβa=(N-a)(2πN/2Γ(k-a/2)Γ(k/2)/Γ(k/2)r(N-a/2))1/N-a-1.Furthermore,βa can not be replaced by any greater number.As the application,we obtain some weighted Trudinger–Moser inequalities for x-symmetric function on Grushin space.
基金Supported by the Fundamental Research Funds for the Central Universities (Grant No. 1082001)National Natural Science Foundation of China (Grant No. 10571044)
文摘Let G be a simple Lie group of real rank one and N be in the Iwasawa decomposition of G. Under the assumption of some symmetries, we obtain an existent result for the nonlinear equation △NU + (1 + ∈K(x, z))u2*-1 = 0 on N, which generalizes the result of Malchiodi and Uguzzoni to the Kohn's subelliptic context on N in presence of symmetry.