期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
An Interpolation of Hardy Inequality and Moser–Trudinger Inequality on Riemannian Manifolds with Negative Curvature 被引量:2
1
作者 Yan Qing DONG qiao hua yang 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2016年第7期856-866,共11页
Let M be a complete, simply connected Riemannian manifold with negative curvature. We obtain an interpolation of Hardy inequality and Moser-Trudinger inequality on M. Furthermore, the constant we obtain is sharp.
关键词 Moser-Trudinger inequality Hardy inequality Riemannian manifold negative curvature
原文传递
A Weighted Trudinger–Moser Inequality on R^N and Its Application to Grushin Operator
2
作者 Jia Jun WANG qiao hua yang 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2020年第4期363-378,共16页
Let x=(x',x'')with x'∈Rk and x''∈R^N-k andΩbe a x'-symmetric and bounded domain in R^N(N≥2).We show that if 0≤a≤k-2,then there exists a positive constant C>0 such that for all x... Let x=(x',x'')with x'∈Rk and x''∈R^N-k andΩbe a x'-symmetric and bounded domain in R^N(N≥2).We show that if 0≤a≤k-2,then there exists a positive constant C>0 such that for all x'-symmetric function u∈C0^∞(Ω)with∫Ω|■u(x)|^N-a|x'|^-adx≤1,the following uniform inequality holds1/∫Ω|x|^-adx∫Ωe^βa|u|N-a/N-a-1|x'|^-adx≤C,whereβa=(N-a)(2πN/2Γ(k-a/2)Γ(k/2)/Γ(k/2)r(N-a/2))1/N-a-1.Furthermore,βa can not be replaced by any greater number.As the application,we obtain some weighted Trudinger–Moser inequalities for x-symmetric function on Grushin space. 展开更多
关键词 Trudinger–Moser inequality Grushin operator sharp constant H-type group
原文传递
Perturbation of Yamabe Equation on Iwasawa N Groups in Presence of Symmetry
3
作者 qiao hua yang 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第8期1575-1590,共16页
Let G be a simple Lie group of real rank one and N be in the Iwasawa decomposition of G. Under the assumption of some symmetries, we obtain an existent result for the nonlinear equation △NU + (1 + ∈K(x, z))u2... Let G be a simple Lie group of real rank one and N be in the Iwasawa decomposition of G. Under the assumption of some symmetries, we obtain an existent result for the nonlinear equation △NU + (1 + ∈K(x, z))u2*-1 = 0 on N, which generalizes the result of Malchiodi and Uguzzoni to the Kohn's subelliptic context on N in presence of symmetry. 展开更多
关键词 Heisenberg type groups Yamabe equations simple Lie group of real rank one
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部