期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Sufficient variable selection of high dimensional nonparametric nonlinear systems based on Fourier spectrum of density-weighted derivative
1
作者 Bing SUN Changming CHENG +1 位作者 qiaoyan cai Zhike PENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第11期2011-2022,共12页
The variable selection of high dimensional nonparametric nonlinear systems aims to select the contributing variables or to eliminate the redundant variables.For a high dimensional nonparametric nonlinear system,howeve... The variable selection of high dimensional nonparametric nonlinear systems aims to select the contributing variables or to eliminate the redundant variables.For a high dimensional nonparametric nonlinear system,however,identifying whether a variable contributes or not is not easy.Therefore,based on the Fourier spectrum of densityweighted derivative,one novel variable selection approach is developed,which does not suffer from the dimensionality curse and improves the identification accuracy.Furthermore,a necessary and sufficient condition for testing a variable whether it contributes or not is provided.The proposed approach does not require strong assumptions on the distribution,such as elliptical distribution.The simulation study verifies the effectiveness of the novel variable selection algorithm. 展开更多
关键词 nonlinear system identification variable selection Fourier spectrum non-parametric nonlinear system
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部