Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate...Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate various environmental and hormonal signals to regulate plant growth and development in Arabidopsis.We examined the role of two DELLA proteins,GmRGAa and GmRGAb,in soybean plant height control.Knockout of these proteins led to longer internodes and increased plant height,primarily by increasing cell elongation.GmRGAs functioned under different light conditions,including red,blue,and far-red light,to repress plant height.Interaction studies revealed that GmRGAs interacted with the blue light receptor GmCRY1b.Consistent with this,GmCRY1b partially regulated plant height via GmRGAs.Additionally,DELLA proteins were found to stabilize the protein GmSTF1/2,a key positive regulator of photomorphogenesis.This stabilization led to increased transcription of GmGA2ox-7b and subsequent reduction in plant height.This study enhances our understanding of DELLA-mediated plant height control,offering Gmrgaab mutants for soybean structure and yield optimization.展开更多
The biodiversity of the mycobiome,an important component of the oral microbial community,and the roles of fungal–bacterial and fungal–immune system interactions in the pathogenesis of oral lichen planus (OLP) remain...The biodiversity of the mycobiome,an important component of the oral microbial community,and the roles of fungal–bacterial and fungal–immune system interactions in the pathogenesis of oral lichen planus (OLP) remain largely uncharacterized.In this study,we sequenced the salivary mycobiome and bacteriome associated with OLP.First,we described the dysbiosis of the microbiome in OLP patients,which exhibits lower levels of fungi and higher levels of bacteria.Significantly higher abundances of the fungi Candida and Aspergillus in patients with reticular OLP and of Alternaria and Sclerotiniaceae_unidentified in patients with erosive OLP were observed compared to the healthy controls.Aspergillus was identified as an “OLP-associated” fungus because of its detection at a higher frequency than in the healthy controls.Second,the co-occurrence patterns of the salivary mycobiome–bacteriome demonstrated negative associations between specific fungal and bacterial taxa identified in the healthy controls,which diminished in the reticular OLP group and even became positive in the erosive OLP group.Moreover,the oral cavities of OLP patients were colonized by dysbiotic oral flora with lower ecological network complexity and decreased fungal–Firmicutes and increased fungal–Bacteroidetes sub-networks.Third,several keystone fungal genera (Bovista,Erysiphe,Psathyrella,etc.) demonstrated significant correlations with clinical scores and IL-17 levels.Thus,we established that fungal dysbiosis is associated with the aggravation of OLP.Fungal dysbiosis could alter the salivary bacteriome or may reflect a direct effect of host immunity,which participates in OLP pathogenesis.展开更多
Mangrove reforestation with introduced species has been an important strategy to restore mangrove ecosystem functioning.However,how such activities affect microbially driven methane(CH4),nitrogen(N),and sulfur(S)cycli...Mangrove reforestation with introduced species has been an important strategy to restore mangrove ecosystem functioning.However,how such activities affect microbially driven methane(CH4),nitrogen(N),and sulfur(S)cycling of rhizosphere microbiomes remains unclear.To understand the effect of environmental selection and the evolutionary process on microbially driven biogeochemical cycles in native and introduced mangrove rhizospheres,we analyzed key genomic and functional profiles of rhizosphere microbiomes from native and introduced mangrove species by metagenome sequencing technologies.Compared with the native mangrove(Kandelia obovata,KO),the introduced mangrove(Sonneratia apetala,SA)rhizosphere microbiome had significantly(p<0.05)higher average genome size(AGS)(5.8 vs.5.5 Mb),average 16S ribosomal RNA gene copy number(3.5 vs.3.1),relative abundances of mobile genetic elements,and functional diversity in terms of the Shannon index(7.88 vs.7.84)but lower functional potentials involved in CH4 cycling(e.g.,mcrABCDG and pmoABC),N2 fixation(nifHDK),and inorganic S cycling(dsrAB,dsrC,dsrMKJOP,soxB,sqr,and fccAB).Similar results were also observed from the recovered Proteobacterial metagenome-assembled genomes with a higher AGS and distinct functions in the introduced mangrove rhizosphere.Additionally,salinity and ammonium were identified as the main environmental drivers of functional profiles of mangrove rhizosphere microbiomes through deterministic processes.This study advances our understanding of microbially mediated biogeochemical cycling of CH_(4),N,and S in the mangrove rhizosphere and provides novel insights into the influence of environmental selection and evolutionary processes on ecosystem functions,which has important implications for future mangrove reforestation.展开更多
Cobalamin(B_(12)),an essential nutrient and growth cofactor for many living organisms on Earth,can be fully synthesized only by selected prokaryotes in nature.Therefore,microbial communities related to B_(12) biosynth...Cobalamin(B_(12)),an essential nutrient and growth cofactor for many living organisms on Earth,can be fully synthesized only by selected prokaryotes in nature.Therefore,microbial communities related to B_(12) biosynthesis could serve as an example subsystem to disentangle the underlying ecological mechanisms balancing the function and taxonomic make-up of complex functional assemblages.By anchoring microbial traits potentially involved in B_(12) biosynthesis,we depict the biogeographic patterns of B_(12) biosynthesis genes and the taxa harboring them in the global ocean,despite the limitations of detecting de novo B_(12) synthesizers via metagenomes alone.Both the taxonomic and functional composition of B_(12) biosynthesis genes were strongly shaped by depth,differentiating the epipelagic zones from the mesopelagic layers.Functional genes related to B_(12) biosynthesis were relatively stably distributed across different oceans,but the taxa harboring them varied considerably,showing clear functional redundancy among microbial systems.Microbial taxa carrying B_(12) biosynthesis genes in the surface water were influenced by environmental factors such as temperature,oxygen,and nitrate.However,the composition of functional genes was only weakly associated with these environmental factors.Null model analyses demonstrated that determinism governed the variations in B_(12) biosynthesis genes,whereas a higher degree of stochasticity was associated with taxonomic variations.Significant associations were observed between the chlorophyll a concentration and B_(12) biosynthesis,confirming its importance in primary production in the global ocean.The results of this study reveal an essential ecological mechanism governing the assembly of microbes in nature:the environment selects for function rather than taxonomy;functional redundancy underlies stochastic community assembly.展开更多
The goal of achieving carbon neutrality in the next 30-40 years is approaching worldwide consensus and requires coordinated efforts to combat the increasing threat of climate change.Two main sets of actions have been ...The goal of achieving carbon neutrality in the next 30-40 years is approaching worldwide consensus and requires coordinated efforts to combat the increasing threat of climate change.Two main sets of actions have been proposed to address this grand goal.One is to reduce anthropogenic CO2emissions to the atmosphere,and the other is to increase carbon sinks or negative emissions,i.e.,removing CO2from the atmosphere.Here we advocate eco-engineering approaches for ocean negative carbon emission(ONCE),aiming to enhance carbon sinks in the marine environment.An international program is being established to promote coordinated efforts in developing ONCE-relevant strategies and methodologies,taking into consideration ecological/biogeochemical processes and mechanisms related to different forms of carbon(inorganic/organic,biotic/abiotic,particulate/dissolved) for sequestration.We focus on marine ecosystem-based approaches and pay special attention to mechanisms that require transformative research,including those elucidating interactions between the biological pump(BP),the microbial carbon pump(MCP),and microbially induced carbonate precipitation(MICP).Eutrophic estuaries,hypoxic and anoxic waters,coral reef ecosystems,as well as aquaculture areas are particularly considered in the context of efforts to increase their capacity as carbon sinks.ONCE approaches are thus expected to be beneficial for both carbon sequestration and alleviation of environmental stresses.展开更多
Rice endosperm plays a very important role in seedling germination and determines the qualities of rice grain. Although studies on specific gene categories in endosperm have been carried out, global view of gene expre...Rice endosperm plays a very important role in seedling germination and determines the qualities of rice grain. Although studies on specific gene categories in endosperm have been carried out, global view of gene expression at a transcription level In rice endosperm Is still limited. To gain a better understanding of the global and tissue-specific gene expression profiles In rice endosperm, a cDNA library from rice endosperm of immature seeds was sequenced. A cDNA array was constructed based on the tentative unique transcripts derived from expression sequence tag (EST) assembling results and then hybridized with cDNAs from five different tissues or organs including endosperm, embryo, leaf, stem and root of rice. Significant redundancy was found for genes encoding prolamin, glutelin, allergen, and starch synthesis proteins, accounting for ~34% of the total ESTs obtained. The cDNA array revealed 87 significantly expressed genes In endosperm compared with the other four organs or tissues. These genes included 13 prolamin family proteins, 17 glutelin family proteins, 12 binding proteins, nine catalytic proteins and four ribosomal proteins, indicating a complicated biological processing in rice endosperm. In addition, Northern verification of 1,4-alpha-glucan branching enzyme detected two isoforms in rice endosperm, the larger one of which only existed in endosperm.展开更多
基金supported by the Sci-Tech Innovation 2030(2022ZD0400701-2)Agricultural Science and Technology Innovation Program of CAAS+1 种基金the National Natural Science Foundation of China(31871705)the Central Public-Interest Scientific Institution Basal Research Fund。
文摘Plant height influences plant architecture,lodging resistance,and yield performance.It is modulated by gibberellic acid(GA)metabolism and signaling.DELLA proteins,acting as central repressors of GA signaling,integrate various environmental and hormonal signals to regulate plant growth and development in Arabidopsis.We examined the role of two DELLA proteins,GmRGAa and GmRGAb,in soybean plant height control.Knockout of these proteins led to longer internodes and increased plant height,primarily by increasing cell elongation.GmRGAs functioned under different light conditions,including red,blue,and far-red light,to repress plant height.Interaction studies revealed that GmRGAs interacted with the blue light receptor GmCRY1b.Consistent with this,GmCRY1b partially regulated plant height via GmRGAs.Additionally,DELLA proteins were found to stabilize the protein GmSTF1/2,a key positive regulator of photomorphogenesis.This stabilization led to increased transcription of GmGA2ox-7b and subsequent reduction in plant height.This study enhances our understanding of DELLA-mediated plant height control,offering Gmrgaab mutants for soybean structure and yield optimization.
基金supported by the National Key Research and Development Program of China (2016YFC1102700)the National Natural Science Foundation of China (grant No.: 81771085, 81430011, 81600858, and 81600874)the Key projects of Sichuan Provincial Health and Family planning Commission (grant No.: 16ZD021)
文摘The biodiversity of the mycobiome,an important component of the oral microbial community,and the roles of fungal–bacterial and fungal–immune system interactions in the pathogenesis of oral lichen planus (OLP) remain largely uncharacterized.In this study,we sequenced the salivary mycobiome and bacteriome associated with OLP.First,we described the dysbiosis of the microbiome in OLP patients,which exhibits lower levels of fungi and higher levels of bacteria.Significantly higher abundances of the fungi Candida and Aspergillus in patients with reticular OLP and of Alternaria and Sclerotiniaceae_unidentified in patients with erosive OLP were observed compared to the healthy controls.Aspergillus was identified as an “OLP-associated” fungus because of its detection at a higher frequency than in the healthy controls.Second,the co-occurrence patterns of the salivary mycobiome–bacteriome demonstrated negative associations between specific fungal and bacterial taxa identified in the healthy controls,which diminished in the reticular OLP group and even became positive in the erosive OLP group.Moreover,the oral cavities of OLP patients were colonized by dysbiotic oral flora with lower ecological network complexity and decreased fungal–Firmicutes and increased fungal–Bacteroidetes sub-networks.Third,several keystone fungal genera (Bovista,Erysiphe,Psathyrella,etc.) demonstrated significant correlations with clinical scores and IL-17 levels.Thus,we established that fungal dysbiosis is associated with the aggravation of OLP.Fungal dysbiosis could alter the salivary bacteriome or may reflect a direct effect of host immunity,which participates in OLP pathogenesis.
基金supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(SML2020SP004)the National Natural Science Foundation of China(91951207,32100077,31770539,31870469,42177011,41676105,41771095,62170346)the China Postdoctoral Science Foundation(2021M703751).
文摘Mangrove reforestation with introduced species has been an important strategy to restore mangrove ecosystem functioning.However,how such activities affect microbially driven methane(CH4),nitrogen(N),and sulfur(S)cycling of rhizosphere microbiomes remains unclear.To understand the effect of environmental selection and the evolutionary process on microbially driven biogeochemical cycles in native and introduced mangrove rhizospheres,we analyzed key genomic and functional profiles of rhizosphere microbiomes from native and introduced mangrove species by metagenome sequencing technologies.Compared with the native mangrove(Kandelia obovata,KO),the introduced mangrove(Sonneratia apetala,SA)rhizosphere microbiome had significantly(p<0.05)higher average genome size(AGS)(5.8 vs.5.5 Mb),average 16S ribosomal RNA gene copy number(3.5 vs.3.1),relative abundances of mobile genetic elements,and functional diversity in terms of the Shannon index(7.88 vs.7.84)but lower functional potentials involved in CH4 cycling(e.g.,mcrABCDG and pmoABC),N2 fixation(nifHDK),and inorganic S cycling(dsrAB,dsrC,dsrMKJOP,soxB,sqr,and fccAB).Similar results were also observed from the recovered Proteobacterial metagenome-assembled genomes with a higher AGS and distinct functions in the introduced mangrove rhizosphere.Additionally,salinity and ammonium were identified as the main environmental drivers of functional profiles of mangrove rhizosphere microbiomes through deterministic processes.This study advances our understanding of microbially mediated biogeochemical cycling of CH_(4),N,and S in the mangrove rhizosphere and provides novel insights into the influence of environmental selection and evolutionary processes on ecosystem functions,which has important implications for future mangrove reforestation.
基金supported by National Key Research and Development Program of China (2020YFA0607600 and 2019YFA0606700)the National Natural Science Foundation of China (Nos.31971446,92051110,and 32371598)+2 种基金the Natural Science Foundations of Shandong Province (2020ZLYS04 and ZR2020YQ21)the Taishan Young Scholarship of Shandong Provincethe Distinguished Young Scholarship of Shandong University.
文摘Cobalamin(B_(12)),an essential nutrient and growth cofactor for many living organisms on Earth,can be fully synthesized only by selected prokaryotes in nature.Therefore,microbial communities related to B_(12) biosynthesis could serve as an example subsystem to disentangle the underlying ecological mechanisms balancing the function and taxonomic make-up of complex functional assemblages.By anchoring microbial traits potentially involved in B_(12) biosynthesis,we depict the biogeographic patterns of B_(12) biosynthesis genes and the taxa harboring them in the global ocean,despite the limitations of detecting de novo B_(12) synthesizers via metagenomes alone.Both the taxonomic and functional composition of B_(12) biosynthesis genes were strongly shaped by depth,differentiating the epipelagic zones from the mesopelagic layers.Functional genes related to B_(12) biosynthesis were relatively stably distributed across different oceans,but the taxa harboring them varied considerably,showing clear functional redundancy among microbial systems.Microbial taxa carrying B_(12) biosynthesis genes in the surface water were influenced by environmental factors such as temperature,oxygen,and nitrate.However,the composition of functional genes was only weakly associated with these environmental factors.Null model analyses demonstrated that determinism governed the variations in B_(12) biosynthesis genes,whereas a higher degree of stochasticity was associated with taxonomic variations.Significant associations were observed between the chlorophyll a concentration and B_(12) biosynthesis,confirming its importance in primary production in the global ocean.The results of this study reveal an essential ecological mechanism governing the assembly of microbes in nature:the environment selects for function rather than taxonomy;functional redundancy underlies stochastic community assembly.
基金support from the National Natural Science Foundation of China (42141003, 91851210, 41876119, 42188102, 91751207, and 91951207)the National Key Research and Development Program of China (2018YFA06055800 and 2020YFA0607600)+9 种基金support by the Korean Ministry of Oceans and Fisheries (20220558)the National Research Foundation of Korea (NRF-2018R1A2B2006340)support by the German Academic Exchange service (Deutscher Akademischer Austauschdienst, Make Our Planet Great Again-German Research Initiative, 57429828)the German Federal Ministry of Education and Researchsupport by the joint National Natural Science Foundation of China-Israel Science Foundation (NSFC-ISF) Research Program (42161144006 and 3511/21, respectively)support by the Russian Foundation for Basic Research (20-05-00381-a)the Russian Fundamental Programs of Pacific Oceanological Institute (01201363041 and 01201353055)supported by the following provincial and municipal authorities of China: Southern Marine Science and Engineering Guangdong Laboratory (K19313901) (Guangzhou)Southern Marine Science and Engineering Guangdong Laboratory (SML2020SP004) (Zhuhai)Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology (ZDSYS201802081843490)。
文摘The goal of achieving carbon neutrality in the next 30-40 years is approaching worldwide consensus and requires coordinated efforts to combat the increasing threat of climate change.Two main sets of actions have been proposed to address this grand goal.One is to reduce anthropogenic CO2emissions to the atmosphere,and the other is to increase carbon sinks or negative emissions,i.e.,removing CO2from the atmosphere.Here we advocate eco-engineering approaches for ocean negative carbon emission(ONCE),aiming to enhance carbon sinks in the marine environment.An international program is being established to promote coordinated efforts in developing ONCE-relevant strategies and methodologies,taking into consideration ecological/biogeochemical processes and mechanisms related to different forms of carbon(inorganic/organic,biotic/abiotic,particulate/dissolved) for sequestration.We focus on marine ecosystem-based approaches and pay special attention to mechanisms that require transformative research,including those elucidating interactions between the biological pump(BP),the microbial carbon pump(MCP),and microbially induced carbonate precipitation(MICP).Eutrophic estuaries,hypoxic and anoxic waters,coral reef ecosystems,as well as aquaculture areas are particularly considered in the context of efforts to increase their capacity as carbon sinks.ONCE approaches are thus expected to be beneficial for both carbon sequestration and alleviation of environmental stresses.
基金the Zhejiang Provincial Science and Technology Project(2005C22002)
文摘Rice endosperm plays a very important role in seedling germination and determines the qualities of rice grain. Although studies on specific gene categories in endosperm have been carried out, global view of gene expression at a transcription level In rice endosperm Is still limited. To gain a better understanding of the global and tissue-specific gene expression profiles In rice endosperm, a cDNA library from rice endosperm of immature seeds was sequenced. A cDNA array was constructed based on the tentative unique transcripts derived from expression sequence tag (EST) assembling results and then hybridized with cDNAs from five different tissues or organs including endosperm, embryo, leaf, stem and root of rice. Significant redundancy was found for genes encoding prolamin, glutelin, allergen, and starch synthesis proteins, accounting for ~34% of the total ESTs obtained. The cDNA array revealed 87 significantly expressed genes In endosperm compared with the other four organs or tissues. These genes included 13 prolamin family proteins, 17 glutelin family proteins, 12 binding proteins, nine catalytic proteins and four ribosomal proteins, indicating a complicated biological processing in rice endosperm. In addition, Northern verification of 1,4-alpha-glucan branching enzyme detected two isoforms in rice endosperm, the larger one of which only existed in endosperm.