A series CeO2(ZrO2)/TiO2 catalysts were modified with Er using a sol-gel method.The catalytic activity of the obtained catalysts in the selective catalytic reduction(SCR) of NO with NH3 was investigated to determi...A series CeO2(ZrO2)/TiO2 catalysts were modified with Er using a sol-gel method.The catalytic activity of the obtained catalysts in the selective catalytic reduction(SCR) of NO with NH3 was investigated to determine the appropriate Er dosage.The catalysts were characterized using X-ray diffraction,N2 adsorption,NH3 temperature-programmed desorption,H2 temperature-programmed reduction,photoluminescence spectroscopy,electron paramagnetic resonance spectroscopy,and X-ray photoelectron spectroscopy.The results showed that the optimum Er/Ce molar ratio was 0.10;this catalyst had excellent resistance to catalyst poisoning caused by vapor and sulfur and gave more than 90% NO conversion at 220–395 ℃ and a gas hourly space velocity of 71 400 h^-1.Er incorporation increased the Ti^3+ concentrations,oxygen storage capacities,and oxygen vacancy concentrations of the catalysts,resulting in excellent catalytic performance.Er incorporation also decreased the acid strength and inhibited growth of TiO2 and CeO2 crystal particles,which increased the catalytic activity.The results show that high oxygen vacancy concentrations and oxygen storage capacities,large amounts of Ti^3+,and low acid strengths give excellent SCR activity.展开更多
Soil remediation containing numerous organic contaminants is of great significance to ecological environment.Herein,the synergetic effects of Ce-Mn/Al_(2)O_(3)with different active components on catalytic thermal deso...Soil remediation containing numerous organic contaminants is of great significance to ecological environment.Herein,the synergetic effects of Ce-Mn/Al_(2)O_(3)with different active components on catalytic thermal desorption of chlorobenzene in soil were investigated.The optimized Ce-Mn/Al_(2)O_(3)drastically enhance the desorption efficiency of chlorobenzene,and the corresponding conversion reaches 100%within 1 h at a low temperature of 120℃.The superior performance is ascribed to the formation of Ce-Mn solid solution during the calcination process,resulting in a certain lattice change to the generation of abundant oxygen vacancies and acidic sites.Combining with the analysis of in-situ diffuse reflectance infrared spectroscopy and gas chromatography-mass spectrometry,the final products of chlorobenzene are decomposed into CO_(2),H_(2)O,Cl_(2)and HCl.This work sheds light on the rational design of highly-active catalysts for practical applications of sustainable soil remediation.展开更多
Nb doped MnCe0.2Ox complex oxides catalysts prepared via a homogeneous precipitation method were investigated for synergistic catalytic removal of NOx and chlorobenzene(CB)at low temperatures.The MnNb0.4Ce0.2Ox cataly...Nb doped MnCe0.2Ox complex oxides catalysts prepared via a homogeneous precipitation method were investigated for synergistic catalytic removal of NOx and chlorobenzene(CB)at low temperatures.The MnNb0.4Ce0.2Ox catalyst with a molar ratio of Nb/Mn=0.4 exhibits excellent activity and the NOx and CB removal efficiency reaches 94.5%and 96%at 220℃,respectively.Furthermore,the NOx and CB removal efficiency of MnNb0.4Ce0.2Ox still remains above 80%after injecting 300 ppm SO2 and 7 vol%H2 O for 36 h.In addition,the presence of CB and NOx+NH3 can improve the NOx and CB removal efficiency of MnNb0.4Ce0.2Ox,respectively.The analysis results from N2-BET,Py-IR,H2-TPR and NH3-TPD reveal that the introduction of Nb increases the average pore size,pore volume and surface area,promoted the growth of Lewis acid amount obviously,and enhances redox ability of MnCe0.2Ox at 100-250℃.Moreover,the molecular migration process of NOx,NH3,CB and SO2 in NH3-SCR and CB oxidation reaction over MnNb0.4Ce0.2Ox catalysts were systematically studied.In situ DRIFTS,FT-IR and XPS also confirm that the adsorption of sulfate species and SO2 on the surface of MnNb0.4Ce0.2Ox is inhibited effectively by the introduction of Nb in the presence of SO2 and H2 O.Moreover,Nb additives also enhance the structural stability of MnNb0.4Ce0.2Ox,due to the interactions among Mn,Nb and Ce.The NH3-TPD,H2-TPR and in situ DRIFTS results also confirm that the MnNb0.4Ce0.2Ox still retains abundant acid sites and high redox ability in the presence of SO2 and H2O.In summary,MnNb0.4Ce0.2Ox catalysts represent a promising and effective candidate for controlling NOx and CB at low temperatures.展开更多
A series of CeO2/Al2O3 catalysts was modified with praseodymium oxide using an extrusion method. The cata- lytic activities of the obtained catalysts were measured for the selective catalytic reduction of NO with NH3 ...A series of CeO2/Al2O3 catalysts was modified with praseodymium oxide using an extrusion method. The cata- lytic activities of the obtained catalysts were measured for the selective catalytic reduction of NO with NH3 to screen suitable addition of praseodymium oxide. These samples were characterized by XRD, N2-BET, NH3-TPD, NO-TPD, Py-IR, H2-TPR, Raman spectra and XPS, respectively. Results showed the optimal catalyst with the Pr/Ce molar ratio of 0.10 exhibited more than 90% NO conversion in a wide temperature range of 290-425℃ under GHSV of 5000 h i. The number of Lewis acid sites and the chemisorbed oxygen concentration of the catalysts would increase with the Pr incorporation, which was favorable for the excellent catalytic performance. In addition, the Pr incorporation inhibited growth of the Al2O3 crystal particles and led to the lattice expansion of CeO2, which increased catalytic activity. The results implied that the higher chemisorbed oxygen concentrations and the more Lewis acid sites were conductive to obtain the excellent SCR activity.展开更多
MnCeO_(x)/TiO_(2)has been widely used in selective catalytic reduction(SCR)of NO_(x)at low temperature.However,it is often poisoned in the presence of water vapor and sulfur dioxide.In this work,the promotion mechanis...MnCeO_(x)/TiO_(2)has been widely used in selective catalytic reduction(SCR)of NO_(x)at low temperature.However,it is often poisoned in the presence of water vapor and sulfur dioxide.In this work,the promotion mechanism of Ba modification was investigated.Results show that the doped BaO reacts with CeO_(2)and forms BaCeO_(3).This unique perovskite structure of BaCeO_(3)significantly enhances NO oxidation and NH_(3)activation of MnCeO_(x)/TiO_(2)catalyst so that the NO conversion and the resistances to SO_(2)improve.It is found that Ba species obviously promotes the NO adsorption ability and improve the redox properties of MnCeO_(x)/TiO_(2)catalyst.While the acid properties of the catalyst are inhibited by Ba modification and among which Lewis acid sites are dominant for both MnCeO_(x)/TiO_(2)and MnCe(Ba)O_(x)/TiO_(2)catalysts.Furthermore,in situ DRIFT experiments reveal that the NO reduction upon MnCeO_(x)/TiO_(2)and MnCe(Ba)O_(x)/TiO_(2)catalysts follows both E-R and L-H mechanisms,in which L-H is preferred.Ba species enhances the formation of active nitrate species,which accelerates the NO reduction through L-H mechanism.It is interesting that although Ba species weakens the NH_(3)adsorption,it induces the ammonia conversion to coordination ammonia,which in turn accelerates the catalytic reaction.展开更多
A series of Mn-Mo-W-O_x/TiO_2-SiO_2 catalysts was modified with CeO_2 using an extrusion molding method. The catalytic activities of the obtained catalysts were tested for the synergistic catalytic removals of CO, NO ...A series of Mn-Mo-W-O_x/TiO_2-SiO_2 catalysts was modified with CeO_2 using an extrusion molding method. The catalytic activities of the obtained catalysts were tested for the synergistic catalytic removals of CO, NO and C_3H_8. The ratio of catalyst composition on catalytic activities for NH_3-SCR was optimized, which reveals that the molar ratio of Ti/Si was 9:1 and the catalyst containing 1.5 wt% CeO_2 and 12 wt% Mn-Mo-W-O_x exhibits the best catalytic performances. These samples were characterized by XRD, N_2-BET, Py-IR, NH_3-TPD, SEM/element mapping, H_2-TPR and XPS, respectively. Results show that the optimal catalyst exhibits more than 99% NO conversion, 86% CO conversion and 100% C_3H_8 conversion under GHSV of 5000 h^(-1). In addition, the GHSV has little influence on removal of NO when it is less than 15,000 h^(-1). Furthermore, the addition of CeO_2 will enhance the surface acidity, increase Mn^(4+)concentration and inhibit the grain growth, which are favorable for the excellent catalytic performance.Anyway,the 1.5 wt% CeO_2-12 wt% Mn-Mo-W-O_x/TiO_2-SiO_2 possesses outstanding redox properties,abundant acid sites and high Mn^(4+) concentration, which provide a guarantee for synergistic catalytic removal of CO, NO and HC.展开更多
Sulfur dioxide is one of the main causes of air pollution such as acid rain and photochemical smog,and its pollution control and resource utilization become an important research direction of air pollution control,The...Sulfur dioxide is one of the main causes of air pollution such as acid rain and photochemical smog,and its pollution control and resource utilization become an important research direction of air pollution control,The active component La-Ce-O_(x) is loaded on SiO_(2),γ-Al_(2)O_(3),TiO_(2) and ZrO_(2),and the La-Ce-Ox@ZrO_(2)exhibits the best catalytic activity.By adjusting the loading amount of La-Ce-O_(x),La-Ce-Ox@ZrO_(2) with different mass fractions was prepared.The results show that the activity of 15%La-Ce-Ox@ZrO_(2)catalyst is the best.The SO_(2)conversion is 100%,and the S yield and S selectivity are more than 96% at 350℃.According to the analysis results of H_(2)-TPR,CO_(2)-TPD and NH_(3)-TPD,ZrO_(2) as a support not only reduces the acidity of the catalyst,but also improves the weak alkaline sites of the catalyst,which is conducive to the adsorption and activation of SO2molecules at low temperature.The incorporation of La and Ce increases the oxygen concentration adsorbed on the catalyst.The strong interaction between the support ZrO_(2) and the active component La-Ce-Oxis conducive to the electron transfer between the active component and the support,and improves the activity of the catalyst.For the 15%La-Ce-O_(x)@ZrO_(2),the main reaction intermediates are weakly adsorbed SO_(2)(SO_(3)^(2-)),bicoordinated CO_(3)^(2-),monodentate carbonate and CO in the gas phase.Therefore,the catalytic reaction follows both L-H and E-R mechanisms.展开更多
基金supported by the National Natural Science Foundation of China(51272105)Jiangsu Provincial Science and Technology Supporting Program(BE2013718)+1 种基金Research Subject of Environmental Protection Department of Jiangsu Province of China(2013006)Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)~~
文摘A series CeO2(ZrO2)/TiO2 catalysts were modified with Er using a sol-gel method.The catalytic activity of the obtained catalysts in the selective catalytic reduction(SCR) of NO with NH3 was investigated to determine the appropriate Er dosage.The catalysts were characterized using X-ray diffraction,N2 adsorption,NH3 temperature-programmed desorption,H2 temperature-programmed reduction,photoluminescence spectroscopy,electron paramagnetic resonance spectroscopy,and X-ray photoelectron spectroscopy.The results showed that the optimum Er/Ce molar ratio was 0.10;this catalyst had excellent resistance to catalyst poisoning caused by vapor and sulfur and gave more than 90% NO conversion at 220–395 ℃ and a gas hourly space velocity of 71 400 h^-1.Er incorporation increased the Ti^3+ concentrations,oxygen storage capacities,and oxygen vacancy concentrations of the catalysts,resulting in excellent catalytic performance.Er incorporation also decreased the acid strength and inhibited growth of TiO2 and CeO2 crystal particles,which increased the catalytic activity.The results show that high oxygen vacancy concentrations and oxygen storage capacities,large amounts of Ti^3+,and low acid strengths give excellent SCR activity.
基金Project supported by the National Key Research and Development Program of China(2021YFB3500600,2021YFB3500605,2022YFB3504100)Key R&D Program of Jiangsu Province(BE2022142)+2 种基金Natural Science Foundation of Jiangsu Province(BK20220365)Jiangsu International Cooperation Project(BZ2021018)Chunhui Project Foundation of the Education Department of China(202200554)。
文摘Soil remediation containing numerous organic contaminants is of great significance to ecological environment.Herein,the synergetic effects of Ce-Mn/Al_(2)O_(3)with different active components on catalytic thermal desorption of chlorobenzene in soil were investigated.The optimized Ce-Mn/Al_(2)O_(3)drastically enhance the desorption efficiency of chlorobenzene,and the corresponding conversion reaches 100%within 1 h at a low temperature of 120℃.The superior performance is ascribed to the formation of Ce-Mn solid solution during the calcination process,resulting in a certain lattice change to the generation of abundant oxygen vacancies and acidic sites.Combining with the analysis of in-situ diffuse reflectance infrared spectroscopy and gas chromatography-mass spectrometry,the final products of chlorobenzene are decomposed into CO_(2),H_(2)O,Cl_(2)and HCl.This work sheds light on the rational design of highly-active catalysts for practical applications of sustainable soil remediation.
基金Project supported by the National Natural Science Foundation of China(51902166)the Natural Science Foundation of Jiangsu Province(BK20190786+6 种基金BK20170954)the Key Research and Development Program of Jiangsu Province(BE2018074)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(18KJB430019)the Startup Foundation for Introducing Talent of NUIST(2017r073)the USA NIH/NIAID(R21AI107415)the NSF-PREM program(DMR 1827745)the Philadelphia Foundation。
文摘Nb doped MnCe0.2Ox complex oxides catalysts prepared via a homogeneous precipitation method were investigated for synergistic catalytic removal of NOx and chlorobenzene(CB)at low temperatures.The MnNb0.4Ce0.2Ox catalyst with a molar ratio of Nb/Mn=0.4 exhibits excellent activity and the NOx and CB removal efficiency reaches 94.5%and 96%at 220℃,respectively.Furthermore,the NOx and CB removal efficiency of MnNb0.4Ce0.2Ox still remains above 80%after injecting 300 ppm SO2 and 7 vol%H2 O for 36 h.In addition,the presence of CB and NOx+NH3 can improve the NOx and CB removal efficiency of MnNb0.4Ce0.2Ox,respectively.The analysis results from N2-BET,Py-IR,H2-TPR and NH3-TPD reveal that the introduction of Nb increases the average pore size,pore volume and surface area,promoted the growth of Lewis acid amount obviously,and enhances redox ability of MnCe0.2Ox at 100-250℃.Moreover,the molecular migration process of NOx,NH3,CB and SO2 in NH3-SCR and CB oxidation reaction over MnNb0.4Ce0.2Ox catalysts were systematically studied.In situ DRIFTS,FT-IR and XPS also confirm that the adsorption of sulfate species and SO2 on the surface of MnNb0.4Ce0.2Ox is inhibited effectively by the introduction of Nb in the presence of SO2 and H2 O.Moreover,Nb additives also enhance the structural stability of MnNb0.4Ce0.2Ox,due to the interactions among Mn,Nb and Ce.The NH3-TPD,H2-TPR and in situ DRIFTS results also confirm that the MnNb0.4Ce0.2Ox still retains abundant acid sites and high redox ability in the presence of SO2 and H2O.In summary,MnNb0.4Ce0.2Ox catalysts represent a promising and effective candidate for controlling NOx and CB at low temperatures.
文摘A series of CeO2/Al2O3 catalysts was modified with praseodymium oxide using an extrusion method. The cata- lytic activities of the obtained catalysts were measured for the selective catalytic reduction of NO with NH3 to screen suitable addition of praseodymium oxide. These samples were characterized by XRD, N2-BET, NH3-TPD, NO-TPD, Py-IR, H2-TPR, Raman spectra and XPS, respectively. Results showed the optimal catalyst with the Pr/Ce molar ratio of 0.10 exhibited more than 90% NO conversion in a wide temperature range of 290-425℃ under GHSV of 5000 h i. The number of Lewis acid sites and the chemisorbed oxygen concentration of the catalysts would increase with the Pr incorporation, which was favorable for the excellent catalytic performance. In addition, the Pr incorporation inhibited growth of the Al2O3 crystal particles and led to the lattice expansion of CeO2, which increased catalytic activity. The results implied that the higher chemisorbed oxygen concentrations and the more Lewis acid sites were conductive to obtain the excellent SCR activity.
基金Project supported by National Natural Science Foundation of China(51772149)National Key Research and Development Program of China(2016YFC0205500)+1 种基金Qinglan Project of Jiangsu Province of China,Six Talent Peaks Project in Jiangsu Province(JNHB-044)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘MnCeO_(x)/TiO_(2)has been widely used in selective catalytic reduction(SCR)of NO_(x)at low temperature.However,it is often poisoned in the presence of water vapor and sulfur dioxide.In this work,the promotion mechanism of Ba modification was investigated.Results show that the doped BaO reacts with CeO_(2)and forms BaCeO_(3).This unique perovskite structure of BaCeO_(3)significantly enhances NO oxidation and NH_(3)activation of MnCeO_(x)/TiO_(2)catalyst so that the NO conversion and the resistances to SO_(2)improve.It is found that Ba species obviously promotes the NO adsorption ability and improve the redox properties of MnCeO_(x)/TiO_(2)catalyst.While the acid properties of the catalyst are inhibited by Ba modification and among which Lewis acid sites are dominant for both MnCeO_(x)/TiO_(2)and MnCe(Ba)O_(x)/TiO_(2)catalysts.Furthermore,in situ DRIFT experiments reveal that the NO reduction upon MnCeO_(x)/TiO_(2)and MnCe(Ba)O_(x)/TiO_(2)catalysts follows both E-R and L-H mechanisms,in which L-H is preferred.Ba species enhances the formation of active nitrate species,which accelerates the NO reduction through L-H mechanism.It is interesting that although Ba species weakens the NH_(3)adsorption,it induces the ammonia conversion to coordination ammonia,which in turn accelerates the catalytic reaction.
基金Project supported by the National Key Research and Development Program of China(2016YFC0205500)National Natural Science Foundation of China(51772149)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘A series of Mn-Mo-W-O_x/TiO_2-SiO_2 catalysts was modified with CeO_2 using an extrusion molding method. The catalytic activities of the obtained catalysts were tested for the synergistic catalytic removals of CO, NO and C_3H_8. The ratio of catalyst composition on catalytic activities for NH_3-SCR was optimized, which reveals that the molar ratio of Ti/Si was 9:1 and the catalyst containing 1.5 wt% CeO_2 and 12 wt% Mn-Mo-W-O_x exhibits the best catalytic performances. These samples were characterized by XRD, N_2-BET, Py-IR, NH_3-TPD, SEM/element mapping, H_2-TPR and XPS, respectively. Results show that the optimal catalyst exhibits more than 99% NO conversion, 86% CO conversion and 100% C_3H_8 conversion under GHSV of 5000 h^(-1). In addition, the GHSV has little influence on removal of NO when it is less than 15,000 h^(-1). Furthermore, the addition of CeO_2 will enhance the surface acidity, increase Mn^(4+)concentration and inhibit the grain growth, which are favorable for the excellent catalytic performance.Anyway,the 1.5 wt% CeO_2-12 wt% Mn-Mo-W-O_x/TiO_2-SiO_2 possesses outstanding redox properties,abundant acid sites and high Mn^(4+) concentration, which provide a guarantee for synergistic catalytic removal of CO, NO and HC.
基金Project supported by the National Key Research and Development Program of China (2021YFB3500600,2021YFB3500605)Natural Science Foundation of Jiangsu Province (BK20220365)+5 种基金Key R&D Program of Jiangsu Province (BE2022142)Industry-University-Research Cooperation Project of Jiangsu Province (BY2022514)Natural Science Foundation of the Jiangsu Higher Education Institutions of China (22KJB610002)Jiangsu International Cooperation Project(BZ2021018)Jiangsu Funding Program for Excellent Postdoctoral Talent(2022ZB375)Nanjing Science and Technology Top Experts Gathering Plan and the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Sulfur dioxide is one of the main causes of air pollution such as acid rain and photochemical smog,and its pollution control and resource utilization become an important research direction of air pollution control,The active component La-Ce-O_(x) is loaded on SiO_(2),γ-Al_(2)O_(3),TiO_(2) and ZrO_(2),and the La-Ce-Ox@ZrO_(2)exhibits the best catalytic activity.By adjusting the loading amount of La-Ce-O_(x),La-Ce-Ox@ZrO_(2) with different mass fractions was prepared.The results show that the activity of 15%La-Ce-Ox@ZrO_(2)catalyst is the best.The SO_(2)conversion is 100%,and the S yield and S selectivity are more than 96% at 350℃.According to the analysis results of H_(2)-TPR,CO_(2)-TPD and NH_(3)-TPD,ZrO_(2) as a support not only reduces the acidity of the catalyst,but also improves the weak alkaline sites of the catalyst,which is conducive to the adsorption and activation of SO2molecules at low temperature.The incorporation of La and Ce increases the oxygen concentration adsorbed on the catalyst.The strong interaction between the support ZrO_(2) and the active component La-Ce-Oxis conducive to the electron transfer between the active component and the support,and improves the activity of the catalyst.For the 15%La-Ce-O_(x)@ZrO_(2),the main reaction intermediates are weakly adsorbed SO_(2)(SO_(3)^(2-)),bicoordinated CO_(3)^(2-),monodentate carbonate and CO in the gas phase.Therefore,the catalytic reaction follows both L-H and E-R mechanisms.