Although the internal electric field(IEF)of photocatalysts is acknowledged as a potent driving force for photocharge separation,modulating the IEF intensity to achieve enhanced photocatalytic performances remains a ch...Although the internal electric field(IEF)of photocatalysts is acknowledged as a potent driving force for photocharge separation,modulating the IEF intensity to achieve enhanced photocatalytic performances remains a challenge.Herein,cuprous sulfide nanosheets with different Cu vacancy concentration were employed to study IEF modulation and corresponding direct charge transfer.Among the samples,Cu_(1.8)S nanosheets possessed intensified IEF intensity compared with those of Cu_(2)S and Cu_(1.95)S nanosheets,suggesting that an enhanced IEF intensity could be achieved by introducing more Cu vacancies.This intensified IEF of Cu_(1.8)S nanosheets induced numerous photogenerated electrons to migrate to its surface,and the dissociative electrons were then captured by Cu vacancies,resulting in efficient charge separation spatially.In addition,the Cu vacancies on Cu_(1.8)S nanosheets accumulated electrons as active sites to lower the energy barrier of rate-determining step of CO_(2)photoreduction,leading to the selective conversion of CO_(2)to CO.Herein,the manipulation of IEF intensity through Cu vacancy concentration regulation of cuprous sulfide photocatalysts for efficient charge separation has been discussed,providing a scientific strategy to rationally improve photocata lytic performances for solar energy conversion.展开更多
The electroless Ni-P-carbon nanotubes composite plating was studied on the copper substrate. Metallurgical microscope, scanning electronic microscope, X-ray diffractometer and micro hardness tester were used to study ...The electroless Ni-P-carbon nanotubes composite plating was studied on the copper substrate. Metallurgical microscope, scanning electronic microscope, X-ray diffractometer and micro hardness tester were used to study the structure, constitution and performance of the electroless Ni-P-carbon nanotubes composite deposit. Experiential results show that, with the increment of carbon nanotubes content in electroless plating solution, the grain size on the sample surface decreases whereas the density of grains and the hardness for composite deposit increases. Moreover, adding carbon nanotubes not only improves the degree of crystallization for the composite deposit but also helps their transformation from the amorphous state to the nanocrystal state.展开更多
One of the large-scale industrial applications of Moso bamboo and poplar in China is the production of standardized fiberboard.When making fiberboard,a steam blasting pretreatment without the addition of traditional a...One of the large-scale industrial applications of Moso bamboo and poplar in China is the production of standardized fiberboard.When making fiberboard,a steam blasting pretreatment without the addition of traditional adhesives has become increasingly popular because of its environmental friendliness and wide applicability.In this study,the steam explosion pretreatment of Moso bamboo and poplar was conducted.The steam explosion pressure and holding time were varied to determine the influence of these factors on fiber quality by investigating the morphology of the fiber,the mass ratio of the unexploded specimen at the end face,the chemical composition,and the tensile strength.The following conclusions were drawn:As the steam burst pressure and holding time increased,more cellulose and hemicellulose degradation occurred(the degradation of hemicellulose was greater than that of cellulose),the lignin content rose,and the fiber bundle strength decreased.The degradation of bamboo cellulose was slightly higher than that of poplar,and the degradation of poplar hemicellulose was significantly faster than that of bamboo.Furthermore,increasing the steam explosion pressure and pressure holding time could not effectively increase the lignin content.It is recommended to use a steam blasting pressure of 2.5 MPa or 3.0 MPa and a holding time of 180 s to perform steam blasting on bamboo and poplar specimens.展开更多
Surface oxygen vacancies(OVs) with abundant localized electrons on bismuth-oxygen based photocatalysts are proved to have the ability to capture and activate CO_(2).However,the surface OVs are easily filled with oxyge...Surface oxygen vacancies(OVs) with abundant localized electrons on bismuth-oxygen based photocatalysts are proved to have the ability to capture and activate CO_(2).However,the surface OVs are easily filled with oxygen-containing species and destroyed,losing their effects as active sites and hindering the subsequent CO_(2)photoreduction.For realistic and sustainable CO_(2)photoreduction,constructing sustainable and stable surface OVs as active sites on photocatalysts is essential.This work shows the synthesis of interlayer stretched Bi_(2)O_(2)CO_(3) ultrathin nanosheets with tensile stress,which are beneficial to continuously generating light-induced dynamic OVs.With sufficient active sites,excellent,stable,and selective photoreduction of CO_(2)to CO under simulated solar light is achieved.The light-induced OVs can reduce the energy barrier of rate-determining step,resulting in the 100% product selectivity.The results presented herein demonstrate the effect of dynamic OVs induced by interlayer tensile strain on catalysts for the enhanced selective CO_(2)photoreduction process.展开更多
Photocatalytic reduction of CO_(2)into fuels provides a prospective tactic for regulating the global carbon balance utilizing renewable solar energy.However,CO_(2)molecules are difficult to activate and reduce due to ...Photocatalytic reduction of CO_(2)into fuels provides a prospective tactic for regulating the global carbon balance utilizing renewable solar energy.However,CO_(2)molecules are difficult to activate and reduce due to the thermodynamic stability and chemical inertness.In this work,we develop a novel strategy to promote the adsorption and activation of CO_(2)molecules via the rapid energy exchange between the photoinduced Br vacancies and CO_(2)molecules.Combining in situ continuous wave-electron paramagnetic resonance(cw-EPR)and pulsed EPR technologies,we observe that the spin-spin relaxation time(T_(2))of BiOBr is decreased by 198 ns during the CO_(2)photoreduction reaction,which is further confirmed by the broadened EPR linewidth.This result reveals that there is an energy exchange interaction between in situ formed Br vacancies and CO_(2)molecules,which promotes the formation of high-energy CO_(2)molecules to facilitate the subsequent reduction reaction.In addition,theoretical calculations indicate that the bended CO_(2)adsorption configuration on the surface of BiOBr with Br vacancies caused the decrease of the lowest unoccupied molecular orbital of the CO_(2)molecule,which makes it easier for CO_(2)molecules to acquire electrons and get activated.In situ diffuse reflectance infrared Fourier transform spectroscopy further shows that the activated CO_(2)molecules are favorably converted to key intermediates of COOH*,resulting in a CO generation rate of 9.1μmol g^(-1)h^(-1)and a selectivity of 100%.This study elucidates the underlying mechanism of CO_(2)activation at active sites and deepens the understanding of CO_(2)photoreduction reaction.展开更多
Bismuth-rich Bi_(5)O_(7)Br is a promising photocatalyst for pollutant removal owing to its stability and appropriate band structure in comparison with bismuth oxybromide.However,bulk-phase Bi_(5)O_(7)Br suffers from p...Bismuth-rich Bi_(5)O_(7)Br is a promising photocatalyst for pollutant removal owing to its stability and appropriate band structure in comparison with bismuth oxybromide.However,bulk-phase Bi_(5)O_(7)Br suffers from poor light absorption and high charge recombination rates resulting in poor activity.Elemental doping is a powerful strategy to enhance photocatalytic activity.In this study,we prepared a series of Br autodoped ultrathin Bi_(5)O_(7)Br nanotubes and explored the effect of Br doping on photocatalytic NO removal.The optimal doping content was determined via a photocatalytic NO removal experiment,which revealed the optimal ratio of Bi and Br was approximately 3:1.In situ diffuse reflectance infrared Fourier transform spectroscopy(In situ DRIFT)and density functional theory(DFT)studies revealed that NO removal mechanism catalyzed by Br doped Bi_(5)O_(7)Br.Our work presents a new strategy for the enhancement of photocatalytic pollutant degradation by bismuth oxyhalide photocatalysts.展开更多
基金supported by the National Natural Science Foundation of China(52200123)the Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education(GCP2022007)the Scientific Research and Innovation Team Program of Sichuan University of Science and Engineering(SUSE652A014)。
文摘Although the internal electric field(IEF)of photocatalysts is acknowledged as a potent driving force for photocharge separation,modulating the IEF intensity to achieve enhanced photocatalytic performances remains a challenge.Herein,cuprous sulfide nanosheets with different Cu vacancy concentration were employed to study IEF modulation and corresponding direct charge transfer.Among the samples,Cu_(1.8)S nanosheets possessed intensified IEF intensity compared with those of Cu_(2)S and Cu_(1.95)S nanosheets,suggesting that an enhanced IEF intensity could be achieved by introducing more Cu vacancies.This intensified IEF of Cu_(1.8)S nanosheets induced numerous photogenerated electrons to migrate to its surface,and the dissociative electrons were then captured by Cu vacancies,resulting in efficient charge separation spatially.In addition,the Cu vacancies on Cu_(1.8)S nanosheets accumulated electrons as active sites to lower the energy barrier of rate-determining step of CO_(2)photoreduction,leading to the selective conversion of CO_(2)to CO.Herein,the manipulation of IEF intensity through Cu vacancy concentration regulation of cuprous sulfide photocatalysts for efficient charge separation has been discussed,providing a scientific strategy to rationally improve photocata lytic performances for solar energy conversion.
文摘The electroless Ni-P-carbon nanotubes composite plating was studied on the copper substrate. Metallurgical microscope, scanning electronic microscope, X-ray diffractometer and micro hardness tester were used to study the structure, constitution and performance of the electroless Ni-P-carbon nanotubes composite deposit. Experiential results show that, with the increment of carbon nanotubes content in electroless plating solution, the grain size on the sample surface decreases whereas the density of grains and the hardness for composite deposit increases. Moreover, adding carbon nanotubes not only improves the degree of crystallization for the composite deposit but also helps their transformation from the amorphous state to the nanocrystal state.
基金We thank Jiangsu Province High-level Talent Selection Training(JNHB-127)the National Key R&D Program of China(2017YFC0703501)+5 种基金the National Natural Science Foundation of China(51878590)Jiangsu Provincial Department of Housing and construction(2018ZD117 and 2019ZD092)the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20170926 and BK20150878)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.19KJD220002)the Yangzhou Science and Technology Project(YZ2019047)College Research Project(2019xjzk014)for their funding.
文摘One of the large-scale industrial applications of Moso bamboo and poplar in China is the production of standardized fiberboard.When making fiberboard,a steam blasting pretreatment without the addition of traditional adhesives has become increasingly popular because of its environmental friendliness and wide applicability.In this study,the steam explosion pretreatment of Moso bamboo and poplar was conducted.The steam explosion pressure and holding time were varied to determine the influence of these factors on fiber quality by investigating the morphology of the fiber,the mass ratio of the unexploded specimen at the end face,the chemical composition,and the tensile strength.The following conclusions were drawn:As the steam burst pressure and holding time increased,more cellulose and hemicellulose degradation occurred(the degradation of hemicellulose was greater than that of cellulose),the lignin content rose,and the fiber bundle strength decreased.The degradation of bamboo cellulose was slightly higher than that of poplar,and the degradation of poplar hemicellulose was significantly faster than that of bamboo.Furthermore,increasing the steam explosion pressure and pressure holding time could not effectively increase the lignin content.It is recommended to use a steam blasting pressure of 2.5 MPa or 3.0 MPa and a holding time of 180 s to perform steam blasting on bamboo and poplar specimens.
基金supported by the National Natural Science Foundation of China (52200123, 22225606, 22261142663)。
文摘Surface oxygen vacancies(OVs) with abundant localized electrons on bismuth-oxygen based photocatalysts are proved to have the ability to capture and activate CO_(2).However,the surface OVs are easily filled with oxygen-containing species and destroyed,losing their effects as active sites and hindering the subsequent CO_(2)photoreduction.For realistic and sustainable CO_(2)photoreduction,constructing sustainable and stable surface OVs as active sites on photocatalysts is essential.This work shows the synthesis of interlayer stretched Bi_(2)O_(2)CO_(3) ultrathin nanosheets with tensile stress,which are beneficial to continuously generating light-induced dynamic OVs.With sufficient active sites,excellent,stable,and selective photoreduction of CO_(2)to CO under simulated solar light is achieved.The light-induced OVs can reduce the energy barrier of rate-determining step,resulting in the 100% product selectivity.The results presented herein demonstrate the effect of dynamic OVs induced by interlayer tensile strain on catalysts for the enhanced selective CO_(2)photoreduction process.
基金support from the National Natural Science Foundation of China(Grant Nos.22225606,22172019,22261142663,and 22176029)the Sichuan Natural Science Foundation for Distinguished Scholars(2021JDJQ0006).
文摘Photocatalytic reduction of CO_(2)into fuels provides a prospective tactic for regulating the global carbon balance utilizing renewable solar energy.However,CO_(2)molecules are difficult to activate and reduce due to the thermodynamic stability and chemical inertness.In this work,we develop a novel strategy to promote the adsorption and activation of CO_(2)molecules via the rapid energy exchange between the photoinduced Br vacancies and CO_(2)molecules.Combining in situ continuous wave-electron paramagnetic resonance(cw-EPR)and pulsed EPR technologies,we observe that the spin-spin relaxation time(T_(2))of BiOBr is decreased by 198 ns during the CO_(2)photoreduction reaction,which is further confirmed by the broadened EPR linewidth.This result reveals that there is an energy exchange interaction between in situ formed Br vacancies and CO_(2)molecules,which promotes the formation of high-energy CO_(2)molecules to facilitate the subsequent reduction reaction.In addition,theoretical calculations indicate that the bended CO_(2)adsorption configuration on the surface of BiOBr with Br vacancies caused the decrease of the lowest unoccupied molecular orbital of the CO_(2)molecule,which makes it easier for CO_(2)molecules to acquire electrons and get activated.In situ diffuse reflectance infrared Fourier transform spectroscopy further shows that the activated CO_(2)molecules are favorably converted to key intermediates of COOH*,resulting in a CO generation rate of 9.1μmol g^(-1)h^(-1)and a selectivity of 100%.This study elucidates the underlying mechanism of CO_(2)activation at active sites and deepens the understanding of CO_(2)photoreduction reaction.
基金the National Key Research and Development Program of China(No.2019YFC0214404)Science and Technology Major Projects in Sichuan Province(No.2019KJT0067–2018SZDZX0019)Science and Technology Major Projects in Chengdu(No.2018-ZM01–00044-SN)。
文摘Bismuth-rich Bi_(5)O_(7)Br is a promising photocatalyst for pollutant removal owing to its stability and appropriate band structure in comparison with bismuth oxybromide.However,bulk-phase Bi_(5)O_(7)Br suffers from poor light absorption and high charge recombination rates resulting in poor activity.Elemental doping is a powerful strategy to enhance photocatalytic activity.In this study,we prepared a series of Br autodoped ultrathin Bi_(5)O_(7)Br nanotubes and explored the effect of Br doping on photocatalytic NO removal.The optimal doping content was determined via a photocatalytic NO removal experiment,which revealed the optimal ratio of Bi and Br was approximately 3:1.In situ diffuse reflectance infrared Fourier transform spectroscopy(In situ DRIFT)and density functional theory(DFT)studies revealed that NO removal mechanism catalyzed by Br doped Bi_(5)O_(7)Br.Our work presents a new strategy for the enhancement of photocatalytic pollutant degradation by bismuth oxyhalide photocatalysts.