This study proposes an equivalent-elevation method to evaluate the integrated effects of latitude and elevation on regional and local-scale permafrost distribution in the Qinghai-Tibet Plateau,and to model the general...This study proposes an equivalent-elevation method to evaluate the integrated effects of latitude and elevation on regional and local-scale permafrost distribution in the Qinghai-Tibet Plateau,and to model the general permafrost-distribution patterns in regional and local-scale area.It is found that the Gaussian curve―an empirical model describing the relation between variations of altitudinal permafrost lower limit (PLL) and latitude in the Northern Hemisphere―could be applied in regional-and local-scale areas in the Qinghai-Tibet Plateau in a latitude-sensitive interval of 30°-50°N.The curve was then used to evaluate the latitudinal effect on permafrost distribution through transforming the latitudinal effect into a kind of altitudinal difference of PLL.This study then calculated the local equivalent-elevation value by overlaying the altitudinal difference of PLL onto real elevation at a certain location.The equivalent-elevation method was verified in an experimental subwatershed of the Qinghai-Tibet Plateau.However,feasibility of the method should be further tested in order to extend for future studies.The use of equivalent-elevation values can build a platform for comparing the regional general permafrost distribution in the plateau,and for basing further evaluations of local factors' effects on regional permafrost distribution.展开更多
The Tianshan range,a Paleozoic orogenic belt in Central Asia,has undergone multiple phases of tectonic activities characterized by the N-S compression after the early Mesozoic,including the far-field effects of the Ce...The Tianshan range,a Paleozoic orogenic belt in Central Asia,has undergone multiple phases of tectonic activities characterized by the N-S compression after the early Mesozoic,including the far-field effects of the Cenozoic Indian-Asian collision.However,there are limited reports on the tectonic deformation and initiation of Triassic intracontinental deformation in the Tianshan range.Understanding this structural context is crucial for interpreting the early intracontinental deformation history of the Eurasian continent during the early Mesozoic.Growth strata and syn-tectonic sediments provide a rich source of information on tectonic activities and have been extensively used in the studies of orogenic belts.Based on detail fieldwork conducted in this study,the middle-late Triassic Kelamayi Formation of the northern Kuqa Depression in the southern Tianshan fold-thrust belt has been identified as the typical syn-tectonic growth strata.The youngest detrital zircon component in two lithic sandstone samples from the bottom and top of the Kelamayi growth strata yielded U-Pb ages of 223.4±3.1 and 215.5±2.9 Ma,respectively,indicating that the maximum depositional age of the bottom and top of the Kelamayi growth strata is 226-220 and 218-212 Ma.The geochronological distribution of detrital samples from the Early-Middle Triassic and Late Triassic revealed abrupt changes,suggesting a new source supply resulting from tectonic activation in the Tianshan range.The coupling relationship between the syn-tectonic sedimentation of the Kelamayi Formation and the South Tianshan fold-thrust system provides robust evidence that the Triassic intracontinental deformation of the South Tianshan range began at approximately 226-220 Ma(during the Late Triassic)and ended at approximately 218-212 Ma.These findings provide crucial constraints for understanding the intraplate deformation in the Tianshan range during the Triassic.展开更多
BACKGROUND Diabetes is a metabolic disease characterized by hyperglycemia,which has increased the global medical burden and is also the main cause of death in most countries.AIM To understand the knowledge structure o...BACKGROUND Diabetes is a metabolic disease characterized by hyperglycemia,which has increased the global medical burden and is also the main cause of death in most countries.AIM To understand the knowledge structure of global development status,research focus,and future trend of the relationship between diabetes and metabolomics in the past 20 years.METHODS The articles about the relationship between diabetes and metabolomics in the Web of Science Core Collection were retrieved from 2002 to October 23,2023,and the relevant information was analyzed using CiteSpace6.2.2R(CiteSpace),VOSviewer6.1.18(VOSviewer),and Bibliometrix software under R language.RESULTS A total of 3123 publications were included from 2002 to 2022.In the past two decades,the number of publications and citations in this field has continued to increase.The United States,China,Germany,the United Kingdom,and other relevant funds,institutions,and authors have significantly contributed to this field.Scientific Reports and PLoS One are the journals with the most publications and the most citations.Through keyword co-occurrence and cluster analysis,the closely related keywords are"insulin resistance","risk","obesity","oxidative stress","metabolomics","metabolites"and"biomarkers".Keyword clustering included cardiovascular disease,gut microbiota,metabonomics,diabetic nephropathy,molecular docking,gestational diabetes mellitus,oxidative stress,and insulin resistance.Burst detection analysis of keyword depicted that"Gene","microbiota","validation","kidney disease","antioxidant activity","untargeted metabolomics","management",and"accumulation"are knowledge frontiers in recent years.CONCLUSION The relationship between metabolomics and diabetes is receiving extensive attention.Diabetic nephropathy,diabetic cardiovascular disease,and kidney disease are key diseases for future research in this field.Gut microbiota,molecular docking,and untargeted metabolomics are key research directions in the future.Antioxidant activity,gene,validation,mass spectrometry,management,and accumulation are at the forefront of knowledge frontiers in this field.展开更多
基金Under the auspices of Major State Basic Research Development Program of China(No.2010CB951402)National Natural Science Foundation of China(No.41101067)+1 种基金Foundation for Excellent Youth Scholars of Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences(No.Y184A91001)Research Program of State Key Laboratory of Frozen Soil Engineering of Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences(No.SKLFSE-ZQ-10)
文摘This study proposes an equivalent-elevation method to evaluate the integrated effects of latitude and elevation on regional and local-scale permafrost distribution in the Qinghai-Tibet Plateau,and to model the general permafrost-distribution patterns in regional and local-scale area.It is found that the Gaussian curve―an empirical model describing the relation between variations of altitudinal permafrost lower limit (PLL) and latitude in the Northern Hemisphere―could be applied in regional-and local-scale areas in the Qinghai-Tibet Plateau in a latitude-sensitive interval of 30°-50°N.The curve was then used to evaluate the latitudinal effect on permafrost distribution through transforming the latitudinal effect into a kind of altitudinal difference of PLL.This study then calculated the local equivalent-elevation value by overlaying the altitudinal difference of PLL onto real elevation at a certain location.The equivalent-elevation method was verified in an experimental subwatershed of the Qinghai-Tibet Plateau.However,feasibility of the method should be further tested in order to extend for future studies.The use of equivalent-elevation values can build a platform for comparing the regional general permafrost distribution in the plateau,and for basing further evaluations of local factors' effects on regional permafrost distribution.
基金supported by the National Key Research and Development Project(Grant No.2018YFC0603700)research grants from the China Geological Survey(Grant Nos.DD20230408,DD20190011,DD20191011 and DD20221824)+1 种基金the Fundamental Research Funds from the Chinese Academy of Geological Sciences(Grant No.JKY202011)the Key Laboratory of Airborne Geophysics and Remote Sensing Geology Ministry of Natural Resources(Grant No.2023YFL23)。
文摘The Tianshan range,a Paleozoic orogenic belt in Central Asia,has undergone multiple phases of tectonic activities characterized by the N-S compression after the early Mesozoic,including the far-field effects of the Cenozoic Indian-Asian collision.However,there are limited reports on the tectonic deformation and initiation of Triassic intracontinental deformation in the Tianshan range.Understanding this structural context is crucial for interpreting the early intracontinental deformation history of the Eurasian continent during the early Mesozoic.Growth strata and syn-tectonic sediments provide a rich source of information on tectonic activities and have been extensively used in the studies of orogenic belts.Based on detail fieldwork conducted in this study,the middle-late Triassic Kelamayi Formation of the northern Kuqa Depression in the southern Tianshan fold-thrust belt has been identified as the typical syn-tectonic growth strata.The youngest detrital zircon component in two lithic sandstone samples from the bottom and top of the Kelamayi growth strata yielded U-Pb ages of 223.4±3.1 and 215.5±2.9 Ma,respectively,indicating that the maximum depositional age of the bottom and top of the Kelamayi growth strata is 226-220 and 218-212 Ma.The geochronological distribution of detrital samples from the Early-Middle Triassic and Late Triassic revealed abrupt changes,suggesting a new source supply resulting from tectonic activation in the Tianshan range.The coupling relationship between the syn-tectonic sedimentation of the Kelamayi Formation and the South Tianshan fold-thrust system provides robust evidence that the Triassic intracontinental deformation of the South Tianshan range began at approximately 226-220 Ma(during the Late Triassic)and ended at approximately 218-212 Ma.These findings provide crucial constraints for understanding the intraplate deformation in the Tianshan range during the Triassic.
基金Supported by National Natural Science Foundation of China,No.U21A20411and the Graduate Research and Innovation Project of Hunan Province,No.CX20220772.
文摘BACKGROUND Diabetes is a metabolic disease characterized by hyperglycemia,which has increased the global medical burden and is also the main cause of death in most countries.AIM To understand the knowledge structure of global development status,research focus,and future trend of the relationship between diabetes and metabolomics in the past 20 years.METHODS The articles about the relationship between diabetes and metabolomics in the Web of Science Core Collection were retrieved from 2002 to October 23,2023,and the relevant information was analyzed using CiteSpace6.2.2R(CiteSpace),VOSviewer6.1.18(VOSviewer),and Bibliometrix software under R language.RESULTS A total of 3123 publications were included from 2002 to 2022.In the past two decades,the number of publications and citations in this field has continued to increase.The United States,China,Germany,the United Kingdom,and other relevant funds,institutions,and authors have significantly contributed to this field.Scientific Reports and PLoS One are the journals with the most publications and the most citations.Through keyword co-occurrence and cluster analysis,the closely related keywords are"insulin resistance","risk","obesity","oxidative stress","metabolomics","metabolites"and"biomarkers".Keyword clustering included cardiovascular disease,gut microbiota,metabonomics,diabetic nephropathy,molecular docking,gestational diabetes mellitus,oxidative stress,and insulin resistance.Burst detection analysis of keyword depicted that"Gene","microbiota","validation","kidney disease","antioxidant activity","untargeted metabolomics","management",and"accumulation"are knowledge frontiers in recent years.CONCLUSION The relationship between metabolomics and diabetes is receiving extensive attention.Diabetic nephropathy,diabetic cardiovascular disease,and kidney disease are key diseases for future research in this field.Gut microbiota,molecular docking,and untargeted metabolomics are key research directions in the future.Antioxidant activity,gene,validation,mass spectrometry,management,and accumulation are at the forefront of knowledge frontiers in this field.