BACKGROUND The prevalence of pelvic organ prolapse(POP)increases with age and parity.Specifically,the prevalence of POP among women aged 20 to 39 is 9.7%,while it rises to 49%among women over 80 years old.Additionally...BACKGROUND The prevalence of pelvic organ prolapse(POP)increases with age and parity.Specifically,the prevalence of POP among women aged 20 to 39 is 9.7%,while it rises to 49%among women over 80 years old.Additionally,as the number of deliveries increases,the prevalence of POP also rises accordingly,with a rate of 12.8%for women with one delivery history,18.7%for those with two deliveries,and 24.6%for women with three or more deliveries.It causes immense suffering for pregnant women.AIM To evaluate the relationship between the levator ani muscle’s hiatus(LH)area and POP in patients with gestational diabetes mellitus(GDM)using perineal ultrasound.METHODS The study cohort comprised 104 patients aged 29.8±3.7 years who sought medical care at our institution between January 2021 and June 2023.All were singleton pregnancies consisting of 75 primiparas and 29 multiparas,with an average parity of 1.7±0.5.According to the POP diagnostic criteria,the 104 subjects were divided into two groups with 52 members each:POP group(patients with GDM combined with POP)and non-POP group(patients with GDM without POP).Perineal ultrasound was used to measure differences in the anteroposterior diameter,transverse diameter,and LH area.Receiver operating characteristic curves were drawn to determine the optimal cutoff values for the LH anteroposterior diameter,transverse diameter,and area for diagnosing POP.RESULTS Statistically significant increase in the LH area,anteroposterior diameter,and lateral diameter were observed in the POP group compared with the non-POP group(P<0.05).Both groups exhibited markedly elevated incidence rates of macrosomia and stress urinary incontinence.For the POP group,the area under the curve(AUC)for the LH area was 0.906 with a 95%confidence interval(CI):0.824-0.988.The optimal cutoff was 13.54cm²,demonstrating a sensitivity of 83.2%and a specificity of 64.4%.The AUC for the anteroposterior diameter reached 0.836 with a 95%CI:0.729-0.943.The optimal cutoff was 5.53 cm with a sensitivity of 64.2%and a specificity of 73.4%.For the lateral diameter,its AUC was 0.568 with a 95%CI:0.407-0.729.The optimal cutoff was 4.67 cm,displaying a sensitivity of 65.9%and a specificity of 69.3%.Logistic regression analysis unveiled that age,body weight,number of childbirths,total number of pregnancies,and gestational weight gain constituted the independent risk factors for the cooccurrence of GDM and POP.CONCLUSION Three-dimensional perineal ultrasonography of LH size and shape changes can effectively diagnose POP.Age,weight,number of births,number of pregnancies,and weight gain during pregnancy are independent risk factors affecting the cooccurrence of GDM and POP.GDM can increase the LH area in patients,and an enlarged LH leads to an increased incidence of POP.展开更多
Novel Mn–Fe–Mg-and Mn–Fe–Ce-loaded alumina(Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3) were developed to catalytically ozonate reverse osmosis concentrates generated from petroleum refinery wastewaters(PRW-ROC). Hi...Novel Mn–Fe–Mg-and Mn–Fe–Ce-loaded alumina(Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3) were developed to catalytically ozonate reverse osmosis concentrates generated from petroleum refinery wastewaters(PRW-ROC). Highly dispersed 100–300-nm deposits of composite multivalent metal oxides of Mn(Mn^2+), Mn^3+,and Mn^4+, Fe(Fe^2+)and Fe^3+ and Mg(Mg^2+), or Ce(Ce^4+) were achieved on Al2O3 supports. The developed Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3 exhibited higher catalytic activity during the ozonation of PRW-ROC than Mn–Fe/Al2O3, Mn/Al2O-3, Fe/Al2O3, and Al2O3. Chemical oxygen demand removal by Mn–Fe–Mg/Al2O3-or Mn–Fe–Ce/Al2O3-catalyzed ozonation increased by 23.9% and23.2%, respectively, in comparison with single ozonation.Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3 notably promoted áOH generation and áOH-mediated oxidation. This study demonstrated the potential use of composite metal oxide-loaded Al2O3 in advanced treatment of bio-recalcitrant wastewaters.展开更多
There is a great interest in developing cost-efficient nutrients to stimulate microorganisms in indigenous microbial enhanced oil recovery(IMEOR) processes.In the present study,the potential of rice bran as a carbon...There is a great interest in developing cost-efficient nutrients to stimulate microorganisms in indigenous microbial enhanced oil recovery(IMEOR) processes.In the present study,the potential of rice bran as a carbon source for promoting IMEOR was investigated on a laboratory scale.The co-applications of rice bran,K2HPO4 and urea under optimized bio-stimulation conditions significantly increased the production of gases,acids and emulsifiers.The structure and diversity of microbial community greatly changed during the IMEOR process,in which Clostridium sp.,Acidobacteria sp.,Bacillus sp.,and Pseudomonas sp.were dominant.Pressurization,acidification and emulsification due to microbial activities and interactions markedly improved the IMEOR processes.This study indicated that rice bran is a potential carbon source for IMEOR.展开更多
Aerobic granular sludge technology has great potential for the treatment of petroleum refinery wastewater.However,strategies to shorten the granulation time and improvement the stability still need to be developed.In ...Aerobic granular sludge technology has great potential for the treatment of petroleum refinery wastewater.However,strategies to shorten the granulation time and improvement the stability still need to be developed.In this work,biochar was prepared from waste petroleum activated sludge(biochar-WPS) and used in a sequencing batch reactor for the treatment of petroleum refinery wastewater.Biochar-WPS presented the surface area of 229.77 m2/g,pore volume of 0.28 cm3/g,H/C and O/C atomic ratios of 0.42 and 0.21,respectively.The porous structure and a high degree of hydrophilicity were found to facilitate microbial colonization and adhesion as well as particle aggregation.Application of biochar-WPS resulted in the formation of more substantial and stable aerobic granules(~66% of granules> 0.46 mm diameter) 15 days earlier compared with the control.The addition of biochar-WPS enhanced the average removal efficiency of chemical organic demand(~3%),oil(~4%)and total nitrogen(~10%) over the control.Increased microbial richness and diversity were observed within the formed granules and had an increased(~4%) proportion of denitrifying bacteria.These results indicate that an aerobic granulation mechanism using biochar-WPS is a feasible option for the treatment of petroleum refinery wastewater.展开更多
The synthesis of a perpendicular growth structure of MoS_(2)nanosheets on graphene for efficient sodium storage is challenging yet ideal due to the benefits of open ion diffusion channels and high electronic conductiv...The synthesis of a perpendicular growth structure of MoS_(2)nanosheets on graphene for efficient sodium storage is challenging yet ideal due to the benefits of open ion diffusion channels and high electronic conductivity.In this study,we have successfully fabricated a novel structure of vertical MoS_(2)nanosheets on graphene,with ZnS nanoparticles serving as bonding points(MoS_(2)/ZnS/G),through a facile hydrothermal method.During the synthesis process,Zn^(2+)not only acts as a landing site for the vertical growth of MoS_(2)nanosheets but also triggers the formation of a defect-rich structure in the final samples.This unique architecture of MoS_(2)/ZnS/G effectively combines the advantages of a vertically aligned geometry and a defectrich structure for energy storage.The resulting structure displays shortened transport paths for electrons/ions,enhanced conductivity,improved structural integrity,and an increased number of active sites for promising electrochemical performance.As expected,when used as anode for sodium-ion batteries,the as-synthesize d MoS_(2)/ZnS/G exhibits excellent rate capability(high capacity of 298 mAh·g^(-1)at 5 A·g^(-1))and good cycling stability(a capacity decay of 0.056%per cycle after 500 cycles at 1 A·g^(-1)).According to the kinetic investigations,the electrochemical process of the MoS_(2)/ZnS/G sample is primarily governe d by a pseudocapacitive behavior,which enhances the charge/discharge kinetics and allows the MoS_(2)/ZnS/G structure to remain intact during cycling.展开更多
Supercapacitors are favorable energy storage devices in the field of emerging energy technologies with high power density,excellent cycle stability and environmental benignity.The performance of supercapacitors is def...Supercapacitors are favorable energy storage devices in the field of emerging energy technologies with high power density,excellent cycle stability and environmental benignity.The performance of supercapacitors is definitively influenced by the electrode materials.Nickel sulfides have attracted extensive interest in recent years due to their specific merits for supercapacitor application.However,the distribution of electrochemically active sites critically limits their electrochemical performance.Notable improvements have been achieved through various strategies such as building synergetic structures with conductive substrates,enhancing the active sites by nanocrystallization and constructing nanohybrid architecture with other electrode materials.This article overviews the progress in the reasonable design and preparation of nickel sulfides and their composite electrodes combined with various bifunctional electric double-layer capacitor(EDLC)-based substances(e.g.,graphene,hollow carbon)and pseudocapacitive materials(e.g.,transition-metal oxides,sulfides,nitrides).Moreover,the corresponding electrochemical performances,reaction mechanisms,emerging challenges and future perspectives are briefly discussed and summarized.展开更多
SnO_(2) is considered to be a promising candidate as anode material for lithium ion batteries,due to its high theoretical specific capacity(1494 mAh·g^(-1)).Nevertheless,SnO_(2)-based anodes suffer from poor elec...SnO_(2) is considered to be a promising candidate as anode material for lithium ion batteries,due to its high theoretical specific capacity(1494 mAh·g^(-1)).Nevertheless,SnO_(2)-based anodes suffer from poor electronic conductivity and serious volume variation(300%)during lithiation/delithiation process,leading to fast capacity fading.To solve these problems,SnO_(2) quantum dots modified N-doped carbon spheres(SnO_(2) QDs@N-C)are fabricated by facile hydrolysis process of SnCl2,accompanied with the polymerization of polypyrrole(PPy),followed by a calcination method.When used as anodes for lithium ion batteries,SnO_(2) QDs@N-C exhibits high discharge capacity,superior rate properties as well as good cyclability.The carbon matrix completely encapsulates the SnO_(2) quantum dots,preventing the aggregation and volume change during cycling.Furthermore,the high N content produces abundant defects in carbon matrix.It is worth noting that SnO_(2) QDs@N-C shows excellent capacitive contribution properties,which may be due to the ultra-small size of SnO_(2) and high conductivity of the carbon matrix.展开更多
文摘BACKGROUND The prevalence of pelvic organ prolapse(POP)increases with age and parity.Specifically,the prevalence of POP among women aged 20 to 39 is 9.7%,while it rises to 49%among women over 80 years old.Additionally,as the number of deliveries increases,the prevalence of POP also rises accordingly,with a rate of 12.8%for women with one delivery history,18.7%for those with two deliveries,and 24.6%for women with three or more deliveries.It causes immense suffering for pregnant women.AIM To evaluate the relationship between the levator ani muscle’s hiatus(LH)area and POP in patients with gestational diabetes mellitus(GDM)using perineal ultrasound.METHODS The study cohort comprised 104 patients aged 29.8±3.7 years who sought medical care at our institution between January 2021 and June 2023.All were singleton pregnancies consisting of 75 primiparas and 29 multiparas,with an average parity of 1.7±0.5.According to the POP diagnostic criteria,the 104 subjects were divided into two groups with 52 members each:POP group(patients with GDM combined with POP)and non-POP group(patients with GDM without POP).Perineal ultrasound was used to measure differences in the anteroposterior diameter,transverse diameter,and LH area.Receiver operating characteristic curves were drawn to determine the optimal cutoff values for the LH anteroposterior diameter,transverse diameter,and area for diagnosing POP.RESULTS Statistically significant increase in the LH area,anteroposterior diameter,and lateral diameter were observed in the POP group compared with the non-POP group(P<0.05).Both groups exhibited markedly elevated incidence rates of macrosomia and stress urinary incontinence.For the POP group,the area under the curve(AUC)for the LH area was 0.906 with a 95%confidence interval(CI):0.824-0.988.The optimal cutoff was 13.54cm²,demonstrating a sensitivity of 83.2%and a specificity of 64.4%.The AUC for the anteroposterior diameter reached 0.836 with a 95%CI:0.729-0.943.The optimal cutoff was 5.53 cm with a sensitivity of 64.2%and a specificity of 73.4%.For the lateral diameter,its AUC was 0.568 with a 95%CI:0.407-0.729.The optimal cutoff was 4.67 cm,displaying a sensitivity of 65.9%and a specificity of 69.3%.Logistic regression analysis unveiled that age,body weight,number of childbirths,total number of pregnancies,and gestational weight gain constituted the independent risk factors for the cooccurrence of GDM and POP.CONCLUSION Three-dimensional perineal ultrasonography of LH size and shape changes can effectively diagnose POP.Age,weight,number of births,number of pregnancies,and weight gain during pregnancy are independent risk factors affecting the cooccurrence of GDM and POP.GDM can increase the LH area in patients,and an enlarged LH leads to an increased incidence of POP.
基金supported in part by the National Science and Technology Major Project of China (No. 2016ZX05040-003)
文摘Novel Mn–Fe–Mg-and Mn–Fe–Ce-loaded alumina(Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3) were developed to catalytically ozonate reverse osmosis concentrates generated from petroleum refinery wastewaters(PRW-ROC). Highly dispersed 100–300-nm deposits of composite multivalent metal oxides of Mn(Mn^2+), Mn^3+,and Mn^4+, Fe(Fe^2+)and Fe^3+ and Mg(Mg^2+), or Ce(Ce^4+) were achieved on Al2O3 supports. The developed Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3 exhibited higher catalytic activity during the ozonation of PRW-ROC than Mn–Fe/Al2O3, Mn/Al2O-3, Fe/Al2O3, and Al2O3. Chemical oxygen demand removal by Mn–Fe–Mg/Al2O3-or Mn–Fe–Ce/Al2O3-catalyzed ozonation increased by 23.9% and23.2%, respectively, in comparison with single ozonation.Mn–Fe–Mg/Al2O3 and Mn–Fe–Ce/Al2O3 notably promoted áOH generation and áOH-mediated oxidation. This study demonstrated the potential use of composite metal oxide-loaded Al2O3 in advanced treatment of bio-recalcitrant wastewaters.
基金supported in part by the National Natural Science Foundation of China (Nos. 51209216 and 21306229)the Korean RDA Grant (No. PJ009472)
文摘There is a great interest in developing cost-efficient nutrients to stimulate microorganisms in indigenous microbial enhanced oil recovery(IMEOR) processes.In the present study,the potential of rice bran as a carbon source for promoting IMEOR was investigated on a laboratory scale.The co-applications of rice bran,K2HPO4 and urea under optimized bio-stimulation conditions significantly increased the production of gases,acids and emulsifiers.The structure and diversity of microbial community greatly changed during the IMEOR process,in which Clostridium sp.,Acidobacteria sp.,Bacillus sp.,and Pseudomonas sp.were dominant.Pressurization,acidification and emulsification due to microbial activities and interactions markedly improved the IMEOR processes.This study indicated that rice bran is a potential carbon source for IMEOR.
基金supported in part by the Science Foundation of China University of Petroleum-Beijing,China(No.2462018BJB001 and 2462020XKJS04)the National Natural Science Foundation of China,China(No.21776307)the Independent Project Program of State Key Laboratory of Petroleum Pollution Control,China(Grant No.PPCIP2017004)。
文摘Aerobic granular sludge technology has great potential for the treatment of petroleum refinery wastewater.However,strategies to shorten the granulation time and improvement the stability still need to be developed.In this work,biochar was prepared from waste petroleum activated sludge(biochar-WPS) and used in a sequencing batch reactor for the treatment of petroleum refinery wastewater.Biochar-WPS presented the surface area of 229.77 m2/g,pore volume of 0.28 cm3/g,H/C and O/C atomic ratios of 0.42 and 0.21,respectively.The porous structure and a high degree of hydrophilicity were found to facilitate microbial colonization and adhesion as well as particle aggregation.Application of biochar-WPS resulted in the formation of more substantial and stable aerobic granules(~66% of granules> 0.46 mm diameter) 15 days earlier compared with the control.The addition of biochar-WPS enhanced the average removal efficiency of chemical organic demand(~3%),oil(~4%)and total nitrogen(~10%) over the control.Increased microbial richness and diversity were observed within the formed granules and had an increased(~4%) proportion of denitrifying bacteria.These results indicate that an aerobic granulation mechanism using biochar-WPS is a feasible option for the treatment of petroleum refinery wastewater.
基金financially supported by the Natural Science Foundation of Jiangsu Province(No.BK20211352)the Nature Science Fundation of Jiangsu Higher Education Institutions of China(No.22KJA430005)。
文摘The synthesis of a perpendicular growth structure of MoS_(2)nanosheets on graphene for efficient sodium storage is challenging yet ideal due to the benefits of open ion diffusion channels and high electronic conductivity.In this study,we have successfully fabricated a novel structure of vertical MoS_(2)nanosheets on graphene,with ZnS nanoparticles serving as bonding points(MoS_(2)/ZnS/G),through a facile hydrothermal method.During the synthesis process,Zn^(2+)not only acts as a landing site for the vertical growth of MoS_(2)nanosheets but also triggers the formation of a defect-rich structure in the final samples.This unique architecture of MoS_(2)/ZnS/G effectively combines the advantages of a vertically aligned geometry and a defectrich structure for energy storage.The resulting structure displays shortened transport paths for electrons/ions,enhanced conductivity,improved structural integrity,and an increased number of active sites for promising electrochemical performance.As expected,when used as anode for sodium-ion batteries,the as-synthesize d MoS_(2)/ZnS/G exhibits excellent rate capability(high capacity of 298 mAh·g^(-1)at 5 A·g^(-1))and good cycling stability(a capacity decay of 0.056%per cycle after 500 cycles at 1 A·g^(-1)).According to the kinetic investigations,the electrochemical process of the MoS_(2)/ZnS/G sample is primarily governe d by a pseudocapacitive behavior,which enhances the charge/discharge kinetics and allows the MoS_(2)/ZnS/G structure to remain intact during cycling.
基金the National Natural Science Foundation of China(Nos.51302079,51702138 and 51403193)the Natural Science Foundation of Hunan Province(No.2017JJ1008)the Key Research and Development Program of Hunan Province of China(No.2018GK2031)。
文摘Supercapacitors are favorable energy storage devices in the field of emerging energy technologies with high power density,excellent cycle stability and environmental benignity.The performance of supercapacitors is definitively influenced by the electrode materials.Nickel sulfides have attracted extensive interest in recent years due to their specific merits for supercapacitor application.However,the distribution of electrochemically active sites critically limits their electrochemical performance.Notable improvements have been achieved through various strategies such as building synergetic structures with conductive substrates,enhancing the active sites by nanocrystallization and constructing nanohybrid architecture with other electrode materials.This article overviews the progress in the reasonable design and preparation of nickel sulfides and their composite electrodes combined with various bifunctional electric double-layer capacitor(EDLC)-based substances(e.g.,graphene,hollow carbon)and pseudocapacitive materials(e.g.,transition-metal oxides,sulfides,nitrides).Moreover,the corresponding electrochemical performances,reaction mechanisms,emerging challenges and future perspectives are briefly discussed and summarized.
基金financially supported by the National Natural Science Foundation of China(Nos.51702138 and 21817056)the Natural Science Foundation of Jiangsu Province(Nos.BK20160213 and BK20170239)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX202358)。
文摘SnO_(2) is considered to be a promising candidate as anode material for lithium ion batteries,due to its high theoretical specific capacity(1494 mAh·g^(-1)).Nevertheless,SnO_(2)-based anodes suffer from poor electronic conductivity and serious volume variation(300%)during lithiation/delithiation process,leading to fast capacity fading.To solve these problems,SnO_(2) quantum dots modified N-doped carbon spheres(SnO_(2) QDs@N-C)are fabricated by facile hydrolysis process of SnCl2,accompanied with the polymerization of polypyrrole(PPy),followed by a calcination method.When used as anodes for lithium ion batteries,SnO_(2) QDs@N-C exhibits high discharge capacity,superior rate properties as well as good cyclability.The carbon matrix completely encapsulates the SnO_(2) quantum dots,preventing the aggregation and volume change during cycling.Furthermore,the high N content produces abundant defects in carbon matrix.It is worth noting that SnO_(2) QDs@N-C shows excellent capacitive contribution properties,which may be due to the ultra-small size of SnO_(2) and high conductivity of the carbon matrix.