期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Predicting lymph node metastasis in colorectal cancer:An analysis of influencing factors to develop a risk model
1
作者 Yun-Peng Lei qing-zhi song +2 位作者 Shuang Liu Ji-Yan Xie Guo-Qing Lv 《World Journal of Gastrointestinal Surgery》 SCIE 2023年第10期2234-2246,共13页
BACKGROUND Colorectal cancer(CRC)is a significant global health issue,and lymph node metastasis(LNM)is a crucial prognostic factor.Accurate prediction of LNM is essential for developing individualized treatment strate... BACKGROUND Colorectal cancer(CRC)is a significant global health issue,and lymph node metastasis(LNM)is a crucial prognostic factor.Accurate prediction of LNM is essential for developing individualized treatment strategies for patients with CRC.However,the prediction of LNM is challenging and depends on various factors such as tumor histology,clinicopathological features,and molecular characteristics.The most reliable method to detect LNM is the histopathological examination of surgically resected specimens;however,this method is invasive,time-consuming,and subject to sampling errors and interobserver variability.AIM To analyze influencing factors and develop and validate a risk prediction model for LNM in CRC based on a large patient queue.METHODS This study retrospectively analyzed 300 patients who underwent CRC surgery at two Peking University Shenzhen hospitals between January and December 2021.A deep learning approach was used to extract features potentially associated with LNM from primary tumor histological images while a logistic regression model was employed to predict LNM in CRC using machine-learning-derived features and clinicopathological variables as predictors.RESULTS The prediction model constructed for LNM in CRC was based on a logistic regression framework that incorporated machine learning-extracted features and clinicopathological variables.The model achieved high accuracy(0.86),sensitivity(0.81),specificity(0.87),positive predictive value(0.66),negative predictive value(0.94),area under the curve for the receiver operating characteristic(0.91),and a low Brier score(0.10).The model showed good agreement between the observed and predicted probabilities of LNM across a range of risk thresholds,indicating good calibration and clinical utility.CONCLUSION The present study successfully developed and validated a potent and effective risk-prediction model for LNM in patients with CRC.This model utilizes machine-learning-derived features extracted from primary tumor histology and clinicopathological variables,demonstrating superior performance and clinical applicability compared to existing models.The study provides new insights into the potential of deep learning to extract valuable information from tumor histology,in turn,improving the prediction of LNM in CRC and facilitate risk stratification and decision-making in clinical practice. 展开更多
关键词 Colorectal cancer Lymph node metastasis Machine learning Risk prediction model Clinicopathological factors Individualized treatment strategies
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部