A new electrical method of conductive carbon-film(with waterproof and anticorrosion ability)was proposed to continuously measure crack propagation rate of brittle rock under THMC coupling condition.A self-designed cou...A new electrical method of conductive carbon-film(with waterproof and anticorrosion ability)was proposed to continuously measure crack propagation rate of brittle rock under THMC coupling condition.A self-designed coupling testing system was used to conduct THMC coupling fracture tests of the pre-cracked red sandstone specimens(where the temperature is only changed)by this new electrical method of conductive carbon-film.Calculation results obtained by the energy method coincide well with the test results.And the higher the temperature is,the earlier the crack is initiated and the larger the crack propagation rate and accelerated velocity are,which can prove the validity of the new electrical method.This new electrical method has advantages of continuously measuring crack propagation rate over the conventional electrical,optical and acoustic methods,and can provide important basis for safety assessment and cracking-arrest design of deep rock mass engineering.展开更多
The maximum Mode Ⅰ and Mode Ⅱ stress intensity factors(SIFs), KI,kmax(θ) and KII,kmax(θ)(0°<θ<360°), of inclined parallel multi-crack varying with relative positions(including horizontal and verti...The maximum Mode Ⅰ and Mode Ⅱ stress intensity factors(SIFs), KI,kmax(θ) and KII,kmax(θ)(0°<θ<360°), of inclined parallel multi-crack varying with relative positions(including horizontal and vertical spacings) are calculated by the complex function and integration method to analyze their interacting mechanism and determine the strengthening and weakening zone of SIFs. The multi-crack initiation criterion is established based on the ratio of maximum tension-shear SIF to predict crack initiation angle, load, and mechanism. The results show that multi-crack always initiates in Mode Ⅰ and the vertical spacing is better not to be times of half crack-length for crack-arrest, which is in good agreement with test results of the red-sandstone cube specimens with three parallel cracks under uniaxial compression. This can prove the validity of the multi-crack initiation criterion.展开更多
Based on analysis of thermo-hydro-mechanical-chemical(THMC)coupling mechanism for brittle rock,THMC coupling indicator in terms of rock porosity was introduced to represent the influencing degree of THMC coupling fiel...Based on analysis of thermo-hydro-mechanical-chemical(THMC)coupling mechanism for brittle rock,THMC coupling indicator in terms of rock porosity was introduced to represent the influencing degree of THMC coupling field on stress field in order to establish THMC coupling fracture criterion.A novel real-time measurement method of permeability(related to porosity)was proposed to determine the THMC coupling indicator,and self-designed THMC coupling tests and scanning electron microscope tests were conducted on pre-cracked red sandstone specimens to study the macroscopic and microscopic fracture mechanism.Research results show that the higher the hydraulic pressure is,the smaller the crack initiation load is and the easier the Mode I fracture occurs.Test results are in good agreement with prediction results(crack initiation load and angle,and fracture mode),which can verify the effectiveness of the newly established THMC coupling fracture criterion.This new fracture criterion can be also further extended to predict THMC coupling fracture of multi-crack problem.展开更多
基金National Natural Science Foundation of China(Nos.51874351,52078495)Hunan Institute of Technology Introduced Talents Research Start-up Fund Project,China(No.HQ22016)。
基金Projects(51474251,51874351) supported by the National Natural Science Foundation of China
文摘A new electrical method of conductive carbon-film(with waterproof and anticorrosion ability)was proposed to continuously measure crack propagation rate of brittle rock under THMC coupling condition.A self-designed coupling testing system was used to conduct THMC coupling fracture tests of the pre-cracked red sandstone specimens(where the temperature is only changed)by this new electrical method of conductive carbon-film.Calculation results obtained by the energy method coincide well with the test results.And the higher the temperature is,the earlier the crack is initiated and the larger the crack propagation rate and accelerated velocity are,which can prove the validity of the new electrical method.This new electrical method has advantages of continuously measuring crack propagation rate over the conventional electrical,optical and acoustic methods,and can provide important basis for safety assessment and cracking-arrest design of deep rock mass engineering.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(51874351,51474251)Hunan Provincial Innovation Foundation For Postgraduate,China(CX2018B047)the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University,China(CSUZC201923).
文摘The maximum Mode Ⅰ and Mode Ⅱ stress intensity factors(SIFs), KI,kmax(θ) and KII,kmax(θ)(0°<θ<360°), of inclined parallel multi-crack varying with relative positions(including horizontal and vertical spacings) are calculated by the complex function and integration method to analyze their interacting mechanism and determine the strengthening and weakening zone of SIFs. The multi-crack initiation criterion is established based on the ratio of maximum tension-shear SIF to predict crack initiation angle, load, and mechanism. The results show that multi-crack always initiates in Mode Ⅰ and the vertical spacing is better not to be times of half crack-length for crack-arrest, which is in good agreement with test results of the red-sandstone cube specimens with three parallel cracks under uniaxial compression. This can prove the validity of the multi-crack initiation criterion.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(Nos.51474251,51874351)the Excellent Postdoctoral Innovative Talents Project of Hunan Province,China(No.2020RC2001).
文摘Based on analysis of thermo-hydro-mechanical-chemical(THMC)coupling mechanism for brittle rock,THMC coupling indicator in terms of rock porosity was introduced to represent the influencing degree of THMC coupling field on stress field in order to establish THMC coupling fracture criterion.A novel real-time measurement method of permeability(related to porosity)was proposed to determine the THMC coupling indicator,and self-designed THMC coupling tests and scanning electron microscope tests were conducted on pre-cracked red sandstone specimens to study the macroscopic and microscopic fracture mechanism.Research results show that the higher the hydraulic pressure is,the smaller the crack initiation load is and the easier the Mode I fracture occurs.Test results are in good agreement with prediction results(crack initiation load and angle,and fracture mode),which can verify the effectiveness of the newly established THMC coupling fracture criterion.This new fracture criterion can be also further extended to predict THMC coupling fracture of multi-crack problem.