期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Distributed process monitoring based on Kantorovich distancemultiblock variational autoencoder and Bayesian inference
1
作者 Zongyu Yao qingchao jiang Xingsheng Gu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期311-323,共13页
Modern industrial processes are typically characterized by large-scale and intricate internal relationships.Therefore,the distributed modeling process monitoring method is effective.A novel distributed monitoring sche... Modern industrial processes are typically characterized by large-scale and intricate internal relationships.Therefore,the distributed modeling process monitoring method is effective.A novel distributed monitoring scheme utilizing the Kantorovich distance-multiblock variational autoencoder(KD-MBVAE)is introduced.Firstly,given the high consistency of relevant variables within each sub-block during the change process,the variables exhibiting analogous statistical features are grouped into identical segments according to the optimal quality transfer theory.Subsequently,the variational autoencoder(VAE)model was separately established,and corresponding T^(2)statistics were calculated.To improve fault sensitivity further,a novel statistic,derived from Kantorovich distance,is introduced by analyzing model residuals from the perspective of probability distribution.The thresholds of both statistics were determined by kernel density estimation.Finally,monitoring results for both types of statistics within all blocks are amalgamated using Bayesian inference.Additionally,a novel approach for fault diagnosis is introduced.The feasibility and efficiency of the introduced scheme are verified through two cases. 展开更多
关键词 Chemical processes SAFETY Kantorovich distance Neural networks Process monitoring Bayesian inference
下载PDF
Multimodal process monitoring based on transition-constrained Gaussian mixture model 被引量:4
2
作者 Shutian Chen qingchao jiang Xuefeng Yan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第12期3070-3078,共9页
Reliable process monitoring is important for ensuring process safety and product quality.A production process is generally characterized bymultiple operation modes,and monitoring thesemultimodal processes is challengi... Reliable process monitoring is important for ensuring process safety and product quality.A production process is generally characterized bymultiple operation modes,and monitoring thesemultimodal processes is challenging.Most multimodal monitoring methods rely on the assumption that the modes are independent of each other,which may not be appropriate for practical application.This study proposes a transition-constrained Gaussian mixture model method for efficient multimodal process monitoring.This technique can reduce falsely and frequently occurring mode transitions by considering the time series information in the mode identification of historical and online data.This process enables the identified modes to reflect the stability of actual working conditions,improve mode identification accuracy,and enhance monitoring reliability in cases of mode overlap.Case studies on a numerical simulation example and simulation of the penicillin fermentation process are provided to verify the effectiveness of the proposed approach inmultimodal process monitoring with mode overlap. 展开更多
关键词 Multimodal process monitoring Gaussian mixture model State transition matrix Process control Process systems Systems engineering
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部