The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a di...The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a diameter of 1.1 m.JUST provides two Nasmyth platforms for placing science instruments.One Nasmyth focus fits a field of view of 10′and the other has an extended field of view of 1.2°with correction optics.A tertiary mirror is used to switch between the two Nasmyth foci.JUST will be installed at a site at Lenghu in Qinghai Province,China,and will conduct spectroscopic observations with three types of instruments to explore the dark universe,trace the dynamic universe,and search for exoplanets:(1)a multi-fiber(2000 fibers)medium-resolution spectrometer(R=4000-5000)to spectroscopically map galaxies and large-scale structure;(2)an integral field unit(IFU)array of 500 optical fibers and/or a long-slit spectrograph dedicated to fast follow-ups of transient sources for multi-messenger astronomy;(3)a high-resolution spectrometer(R~100000)designed to identify Jupiter analogs and Earth-like planets,with the capability to characterize the atmospheres of hot exoplanets.展开更多
Piezoresponse force microscopy(PFM)has emerged as one of the most powerful techniques to probe ferroelectric materials at the nanoscale,yet it has been increasingly recognized that piezoresponse measured by PFM is oft...Piezoresponse force microscopy(PFM)has emerged as one of the most powerful techniques to probe ferroelectric materials at the nanoscale,yet it has been increasingly recognized that piezoresponse measured by PFM is often influenced by electrostatic interactions.In this letter,we report a capacitive excitation PFM(ce-PFM)to minimize the electrostatic interactions.The effectiveness of ce-PFM in minimizing electrostatic interactions is demonstrated by comparing the piezoresponse and the effective piezoelectric coefficient measured by ce-PFM and conventional PFM.The effectiveness is further confirmed through the ferroelectric domain pattern imaged via ce-PFM and conventional PFM in vertical modes,with the corresponding domain contrast obtained by ce-PFM is sharper than conventional PFM.These results demonstrate ce-PFM as an effective tool to minimize the interference from electrostatic interactions and to image ferroelectric domain pattern,and it can be easily implemented in conventional atomic force microscope(AFM)setup to probe true piezoelectricity at the nanoscale.展开更多
The Wide Field Survey Telescope(WFST) is a dedicated photometric surveying facility being built jointly by University of Science and Technology of China(USTC) and the Purple Mountain Observatory(PMO). It is equipped w...The Wide Field Survey Telescope(WFST) is a dedicated photometric surveying facility being built jointly by University of Science and Technology of China(USTC) and the Purple Mountain Observatory(PMO). It is equipped with a 2.5-meter diameter primary mirror, an active optics system, and a mosaic CCD camera with 0.73 gigapixels on the primary focal plane for highquality image capture over a 6.5-square-degree field of view. The installation of WFST near the summit of Saishiteng mountain in the Lenghu region is scheduled in summer of 2023, and the operation is planned to start three months later. WFST will scan the northern sky in four optical bands(u, g, r and i) at cadences from hourly/daily in the deep high-cadence survey(DHS) program, to semi-weekly in the wide field survey(WFS) program. During a photometric night, a nominal 30 s exposure in the WFS program will reach a depth of 22.27, 23.32, 22.84, and 22.31(AB magnitudes) in these four bands, respectively, allowing for the detection of a tremendous amount of transients in the low-z universe and a systematic investigation of the variability of Galactic and extragalactic objects. In the DHS program, intranight 90 s exposures as deep as 23(u) and 24 mag(g), in combination with target of opportunity follow-ups, will provide a unique opportunity to explore energetic transients in demand for high sensitivities, including the electromagnetic counterparts of gravitational wave events, supernovae within a few hours of their explosions,tidal disruption events and fast, luminous optical transients even beyond redshift of unity. In addition, the final 6-year co-added images, anticipated to reach g■25.8 mag in WFS or 1.5 mags deeper in DHS, will be of fundamental importance to general Galactic and extragalactic science. The highly uniform legacy surveys of WFST will serve as an indispensable complement to those of the Vera C. Rubin Observatory's Legacy Survey of Space and Time(LSST) that monitors the southern sky.展开更多
Backward doubly stochastic differential equations driven by Brownian motions and Poisson process (BDSDEP) with non-Lipschitz coefficients on random time interval are studied. The probabilistic interpretation for the...Backward doubly stochastic differential equations driven by Brownian motions and Poisson process (BDSDEP) with non-Lipschitz coefficients on random time interval are studied. The probabilistic interpretation for the solutions to a class of quasilinear stochastic partial differential-integral equations (SPDIEs) is treated with BDSDEP. Under non-Lipschitz conditions, the existence and uniqueness results for measurable solutions to BDSDEP are established via the smoothing technique. Then, the continuous depen- dence for solutions to BDSDEP is derived. Finally, the probabilistic interpretation for the solutions to a class of quasilinear SPDIEs is given.展开更多
Microstructure inhomogeneity and negative segregation have long been challenges for large-size alloy ingots,directly affecting the downstream processing and final performance of products.Here,we used2024 aluminum allo...Microstructure inhomogeneity and negative segregation have long been challenges for large-size alloy ingots,directly affecting the downstream processing and final performance of products.Here,we used2024 aluminum alloy as a model alloy to propose a technique,named double-cooling field casting,i.e.,one 2024 Al alloy rod(Φ20 mm)at room temperature was introduced into the melt along the central axis of the hot-top with the protection of a thermal-insulation tube during the direct chill(DC)casting process of aΦ300 mm 2024 Al alloy ingot.The results show that the introduction of the same alloy solid insert has a remarkable influence on refining grains in the center region of the ingot,reducing negative centerline segregation and decreasing the depth of the center part of the sump.With the application of the 2024 Al insert,the mean size of equiaxed grains at the center part of the ingot decreased from1204±132μm to 721±69μm.The relative deviation of the Cu and Mg main solutes reduced from-0.062 and-0.054 to-0.03 and-0.024,respectively,and the sump depth decreased from 280 mm to242 mm.Moreover,the shape of the solidification front was changed from‘V’-shaped to‘W’-shaped.The ingot quality was thus improved,mainly arising from the dissolution of the cold 2024 Al insert at a proper position of the hot-top counteracting some latent heat of solidification of the ingot,dissipating the heat of the central part of the hot-top by conducting the 2024 Al insert to the outside,and providing extra-nuclei from the unmoltenα-Al particles of the insert.展开更多
We study a kind of partial information non-zero sum differential games of mean-field backward doubly stochastic differential equations,in which the coefficient contains not only the state process but also its marginal...We study a kind of partial information non-zero sum differential games of mean-field backward doubly stochastic differential equations,in which the coefficient contains not only the state process but also its marginal distribution,and the cost functional is also of mean-field type.It is required that the control is adapted to a sub-filtration of the filtration generated by the underlying Brownian motions.We establish a necessary condition in the form of maximum principle and a verification theorem,which is a sufficient condition for Nash equilibrium point.We use the theoretical results to deal with a partial information linear-quadratic(LQ)game,and obtain the unique Nash equilibrium point for our LQ game problem by virtue of the unique solvability of mean-field forward-backward doubly stochastic differential equation.展开更多
基金This work is supported by“the Fundamental Research Funds for the Central Universities”,111 project No.B20019Shanghai Natural Science Foundation,grant No.19ZR1466800.
文摘The Jiao Tong University Spectroscopic Telescope(JUST)is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations.The JUST primary mirror is composed of 18 hexagonal segments,each with a diameter of 1.1 m.JUST provides two Nasmyth platforms for placing science instruments.One Nasmyth focus fits a field of view of 10′and the other has an extended field of view of 1.2°with correction optics.A tertiary mirror is used to switch between the two Nasmyth foci.JUST will be installed at a site at Lenghu in Qinghai Province,China,and will conduct spectroscopic observations with three types of instruments to explore the dark universe,trace the dynamic universe,and search for exoplanets:(1)a multi-fiber(2000 fibers)medium-resolution spectrometer(R=4000-5000)to spectroscopically map galaxies and large-scale structure;(2)an integral field unit(IFU)array of 500 optical fibers and/or a long-slit spectrograph dedicated to fast follow-ups of transient sources for multi-messenger astronomy;(3)a high-resolution spectrometer(R~100000)designed to identify Jupiter analogs and Earth-like planets,with the capability to characterize the atmospheres of hot exoplanets.
基金We acknowledge the National Key Research and Development Program of China(Grant 2016YFA0201001)the National Natural Science Foundation of China(Grants 11372268,11627801,and 1472236)+2 种基金Unite State National Science Foundation(Grant CBET-1435968)the Leading Talents Program of Guangdong Province(Grant 2016LJ06C372)Shenzhen Science and Technology Innovation Committee(Grant KQJSCX20170331162214306).
文摘Piezoresponse force microscopy(PFM)has emerged as one of the most powerful techniques to probe ferroelectric materials at the nanoscale,yet it has been increasingly recognized that piezoresponse measured by PFM is often influenced by electrostatic interactions.In this letter,we report a capacitive excitation PFM(ce-PFM)to minimize the electrostatic interactions.The effectiveness of ce-PFM in minimizing electrostatic interactions is demonstrated by comparing the piezoresponse and the effective piezoelectric coefficient measured by ce-PFM and conventional PFM.The effectiveness is further confirmed through the ferroelectric domain pattern imaged via ce-PFM and conventional PFM in vertical modes,with the corresponding domain contrast obtained by ce-PFM is sharper than conventional PFM.These results demonstrate ce-PFM as an effective tool to minimize the interference from electrostatic interactions and to image ferroelectric domain pattern,and it can be easily implemented in conventional atomic force microscope(AFM)setup to probe true piezoelectricity at the nanoscale.
基金supported by the Cyrus Chun Ying Tang Foundationsthe Major Science and Technology Project of Qinghai Province(Grant No.2019ZJ-A10)+4 种基金the 111 Project for“Observational and Theoretical Research on Dark Matter and Dark Energy”(Grant No.B23042)the National Natural Science Foundation of China(Grant Nos.11833007,12073078,12173088,12192221,12192224,12233008,12273036,and 12273113)the Frontier Scientific Research Program of Deep Space Exploration Laboratory(Grant No.2022-QYKYJH-HXYF-012)the support from the USTC Research Funds of the Double First-Class Initiative(Grant No.YD2030002009)Project for Young Scientists in Basic Research of the Chinese Academy of Sciences(Grant No.YSBR-061),respectively。
文摘The Wide Field Survey Telescope(WFST) is a dedicated photometric surveying facility being built jointly by University of Science and Technology of China(USTC) and the Purple Mountain Observatory(PMO). It is equipped with a 2.5-meter diameter primary mirror, an active optics system, and a mosaic CCD camera with 0.73 gigapixels on the primary focal plane for highquality image capture over a 6.5-square-degree field of view. The installation of WFST near the summit of Saishiteng mountain in the Lenghu region is scheduled in summer of 2023, and the operation is planned to start three months later. WFST will scan the northern sky in four optical bands(u, g, r and i) at cadences from hourly/daily in the deep high-cadence survey(DHS) program, to semi-weekly in the wide field survey(WFS) program. During a photometric night, a nominal 30 s exposure in the WFS program will reach a depth of 22.27, 23.32, 22.84, and 22.31(AB magnitudes) in these four bands, respectively, allowing for the detection of a tremendous amount of transients in the low-z universe and a systematic investigation of the variability of Galactic and extragalactic objects. In the DHS program, intranight 90 s exposures as deep as 23(u) and 24 mag(g), in combination with target of opportunity follow-ups, will provide a unique opportunity to explore energetic transients in demand for high sensitivities, including the electromagnetic counterparts of gravitational wave events, supernovae within a few hours of their explosions,tidal disruption events and fast, luminous optical transients even beyond redshift of unity. In addition, the final 6-year co-added images, anticipated to reach g■25.8 mag in WFS or 1.5 mags deeper in DHS, will be of fundamental importance to general Galactic and extragalactic science. The highly uniform legacy surveys of WFST will serve as an indispensable complement to those of the Vera C. Rubin Observatory's Legacy Survey of Space and Time(LSST) that monitors the southern sky.
基金supported by the National Natural Science Foundation of China (Nos. 10771122,11071145)the Shandong Provincial Natural Science Foundation of China (No. Y2006A08)+2 种基金the Foundation for Innovative Research Groups of National Natural Science Foundation of China (No. 10921101)the National Basic Research Program of China (the 973 Program) (No. 2007CB814900)the Independent Innovation Foundation of Shandong University (No. 2010JQ010)
文摘Backward doubly stochastic differential equations driven by Brownian motions and Poisson process (BDSDEP) with non-Lipschitz coefficients on random time interval are studied. The probabilistic interpretation for the solutions to a class of quasilinear stochastic partial differential-integral equations (SPDIEs) is treated with BDSDEP. Under non-Lipschitz conditions, the existence and uniqueness results for measurable solutions to BDSDEP are established via the smoothing technique. Then, the continuous depen- dence for solutions to BDSDEP is derived. Finally, the probabilistic interpretation for the solutions to a class of quasilinear SPDIEs is given.
基金financially supported by the Fundamental Research Funds for the Central Universities(Nos.N2002025,N2109006 and N2109007)the Project of Promoting Talents in Liaoning Province(No.XLYC1808038)。
文摘Microstructure inhomogeneity and negative segregation have long been challenges for large-size alloy ingots,directly affecting the downstream processing and final performance of products.Here,we used2024 aluminum alloy as a model alloy to propose a technique,named double-cooling field casting,i.e.,one 2024 Al alloy rod(Φ20 mm)at room temperature was introduced into the melt along the central axis of the hot-top with the protection of a thermal-insulation tube during the direct chill(DC)casting process of aΦ300 mm 2024 Al alloy ingot.The results show that the introduction of the same alloy solid insert has a remarkable influence on refining grains in the center region of the ingot,reducing negative centerline segregation and decreasing the depth of the center part of the sump.With the application of the 2024 Al insert,the mean size of equiaxed grains at the center part of the ingot decreased from1204±132μm to 721±69μm.The relative deviation of the Cu and Mg main solutes reduced from-0.062 and-0.054 to-0.03 and-0.024,respectively,and the sump depth decreased from 280 mm to242 mm.Moreover,the shape of the solidification front was changed from‘V’-shaped to‘W’-shaped.The ingot quality was thus improved,mainly arising from the dissolution of the cold 2024 Al insert at a proper position of the hot-top counteracting some latent heat of solidification of the ingot,dissipating the heat of the central part of the hot-top by conducting the 2024 Al insert to the outside,and providing extra-nuclei from the unmoltenα-Al particles of the insert.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.11871309,11671229,71871129,11371226,11301298)the National Key R&D Program of China(Grant No.2018 YFA0703900)+2 种基金the Natural Science Foundation of Shandong Province(No.ZR2019MA013)the Special Funds of Taishan Scholar Project(No.tsqn20161041)the Fostering Project of Dominant Discipline and Talent Team of Shandong Province Higher Education Institutions.
文摘We study a kind of partial information non-zero sum differential games of mean-field backward doubly stochastic differential equations,in which the coefficient contains not only the state process but also its marginal distribution,and the cost functional is also of mean-field type.It is required that the control is adapted to a sub-filtration of the filtration generated by the underlying Brownian motions.We establish a necessary condition in the form of maximum principle and a verification theorem,which is a sufficient condition for Nash equilibrium point.We use the theoretical results to deal with a partial information linear-quadratic(LQ)game,and obtain the unique Nash equilibrium point for our LQ game problem by virtue of the unique solvability of mean-field forward-backward doubly stochastic differential equation.