The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various field...The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance.展开更多
Chiral microstructures exist widely in natural biological materials such as wood, bone, and climbing tendrils. The helical shape of such microstructures plays an important role in stress transfer between fiber and mat...Chiral microstructures exist widely in natural biological materials such as wood, bone, and climbing tendrils. The helical shape of such microstructures plays an important role in stress transfer between fiber and matrix,and in the mechanical properties of biological materials. In this paper, helical fiber fragmentation behavior is studied numerically using the finite-element method(FEM), and then, the effects of helical shape on fiber deformation and fracture,and the corresponding mechanical mechanisms are investigated. The results demonstrate that, to a large degree, the initial microfibril angle(MFA) determines the elastic deformation and fracture behavior of fibers. For fibers with a large MFA, the interfacial area usually has large values, inducing a relatively low fragment density during fiber fragmentation. This work may be helpful in understanding the relationship between microstructure and mechanical property in biological materials, and in the design and fabrication of bio-inspired advanced functional materials.展开更多
This paper presents a hybrid Trefftz (HT) boundary element method (BEM) by using two indirect techniques for mode III fracture problems. Two Trefftz complete functions of Laplace equation for normal elements and a...This paper presents a hybrid Trefftz (HT) boundary element method (BEM) by using two indirect techniques for mode III fracture problems. Two Trefftz complete functions of Laplace equation for normal elements and a special purpose Trefftz function for crack elements are proposed in deriving the Galerkin and the collocation techniques of HT BEM. Then two auxiliary functions are introduced to improve the accuracy of the displacement field near the crack tips, and stress intensity factor (SIF) is evaluated by local crack elements as well. Furthermore, numerical examples are given, including comparisons of the present results with the analytical solution and the other numerical methods, to demonstrate the efficiency for different boundary conditions and to illustrate the convergence influenced by several parameters. It shows that HT BEM by usingthe Galerkin and the collocation techniques is effective for mode III fracture problems.展开更多
The multi-layer cylindrical helicoidal fiber structure(MCHFS)exists widely in biological materials such as bone and wood at the microscale.MCHFSs typically function as reinforcing elements to enhance the toughness of ...The multi-layer cylindrical helicoidal fiber structure(MCHFS)exists widely in biological materials such as bone and wood at the microscale.MCHFSs typically function as reinforcing elements to enhance the toughness of materials.In this study,we establish a shear lag-based pullout model of the cylindrical helicoidal fiber(CHF)for investigating interlayer stress transfer and debonding behaviors,with implications regarding the underlying toughening mechanism of MCHFS.Based on the shear lag assumptions,analytical solutions for the stress and displacement fields of the MCHFS during the pullout are derived by considering the CHF as a cylindrically monoclinic material and verified through the 3D finite element simulation.It is found that the helical winding of CHF results in both axial and hoop interlayer shear stresses.Both the helical winding angle and the elastic moduli of the fiber and matrix have significant influences on interlayer stress transfer.This work reveals a new interlayer stress transfer mechanism in the MCHFS existing widely in biological materials.展开更多
The degree and scope of constraints imposed by International Organizations(IOs)on States are increasing,and identifying the factors affecting the IOs’stances on States is helpful to enhance the state's discourse ...The degree and scope of constraints imposed by International Organizations(IOs)on States are increasing,and identifying the factors affecting the IOs’stances on States is helpful to enhance the state's discourse power and influence in the international community.First,by coding the records of Regular Press Conferences of the Speaking Office of the Chinese Ministry of Foreign Affairs during the period of 20182022,we obtained a dataset of IOs’stances on China-related events.Second,we constructed political relation,economic relation,and humanistic relation indicators to complement the influence factors,adopted the Bayesian logit model,and applied the Monte Carlo Markov chain algorithm and Gibbs sampling to analyze the probability of IOs’positive stances towards China.The result shows that IOs’category,length of establishment,functional position,and relationship with China are all related to their tendency of making a statement about China.In terms of the heterogeneity of event types,forum-type IOs are significantly inclined to give positive assessment compared to service-type IOs on events focusing on China's own development.Further analysis reveals that the model for analyzing and predicting the attitudes of IOs is more effective when the international situation is in a stable period.展开更多
Objective:To analyze the association between iterative decomposition of water and fat with echo asymmetry and least-squares estimation quantification sequence(IDEAL-IQ)magnetic resonance imaging(MRI)of bone marrow fat...Objective:To analyze the association between iterative decomposition of water and fat with echo asymmetry and least-squares estimation quantification sequence(IDEAL-IQ)magnetic resonance imaging(MRI)of bone marrow fat fraction and bone marrow reserve function during concurrent chemoradiotherapy for cervical cancer.Methods:The study retrospectively analyzed twenty-six patients with stage IB1 to IVA cervical cancer treated between February 2020 and November 2020.All patients received concurrent chemoradiotherapy that included platinum alone or combined paclitaxel and platinum.Pelvic IDEAL-IQ MRI(plain and enhanced)was performed before and after treatment.Regions of interest,including the fifth lumbar vertebra,sacrum,ilium,ischium,and femoral neck,were manually delineated,and the bone marrow fat fraction was measured.Peripheral blood cell counts were recorded during treatment,and the relationship between the fat fraction values and changes in the blood cell counts was explored.Results:IDEAL-IQ MRI bone marrow fat fraction was associated with platelet nadir and platelet decline during treatment.The average pelvic bone marrow fat fraction before chemoradiotherapy was moderately negatively correlated with platelet count nadir during concurrent chemoradiotherapy(r=-0.450,P?0.021).The change in average pelvic bone marrow fat fraction through chemoradiotherapy was moderately positively correlated with the degree of thrombocytopenia(r=0.399,P=0.044).Conclusion:Bone marrow fat content quantified by IDEAL-IQ was associated with platelet count nadir and the degree of thrombocytopenia in patients with cervical cancer undergoing concurrent chemoradiotherapy.展开更多
Chemo-mechanical coupling exists in a lot of intelligent materials including hy- drogels, biological tissues and other soft materials. These materials are able to respond to ex- ternal stimulus, such as temperature, c...Chemo-mechanical coupling exists in a lot of intelligent materials including hy- drogels, biological tissues and other soft materials. These materials are able to respond to ex- ternal stimulus, such as temperature, chemical concentration, and pH value. In this paper, a one-dimensional theoretical model for chemo-mechanical coupling is proposed for analyzing the uniaxial stress/strain state of coupling materials. Based on the chemo-mechanical coupled gov- erning equation, the displacement function and concentration function are derived and the stress and chemical potential are obtained. It is shown that the present chemo-mechanical theory can characterize the chemo-mechanical coupling behavior of intelligent materials.展开更多
Two-dimensional(2D)materials have emerged as promising candidates for miniaturized optoelectronic devices due to their strong inelastic interactions with light.On the other hand,a miniaturized optical system also requ...Two-dimensional(2D)materials have emerged as promising candidates for miniaturized optoelectronic devices due to their strong inelastic interactions with light.On the other hand,a miniaturized optical system also requires strong elastic light–matter interactions to control the flow of light.Here we report that a single-layer molybdenum disulfide(MoS2)has a giant optical path length(OPL),around one order of magnitude larger than that from a single-layer of graphene.Using such giant OPL to engineer the phase front of optical beams we have demonstrated,to the best of our knowledge,the world’s thinnest optical lens consisting of a few layers of MoS2 less than 6.3 nm thick.By taking advantage of the giant elastic scattering efficiency in ultra-thin high-index 2D materials,we also demonstrated high-efficiency gratings based on a single-or few-layers of MoS2.The capability of manipulating the flow of light in 2D materials opens an exciting avenue towards unprecedented miniaturization of optical components and the integration of advanced optical functionalities.More importantly,the unique and large tunability of the refractive index by electric field in layered MoS2 will enable various applications in electrically tunable atomically thin optical components,such as micro-lenses with electrically tunable focal lengths,electrical tunable phase shifters with ultra-high accuracy,which cannot be realized by conventional bulk solids.展开更多
A new concept of lightweight structure,namely amorphous-alloy-reinforced perforated armor(ARPA)consisting of the amorphous alloy coating and perforated metal substrate plate,is proposed.The ballistic performance of th...A new concept of lightweight structure,namely amorphous-alloy-reinforced perforated armor(ARPA)consisting of the amorphous alloy coating and perforated metal substrate plate,is proposed.The ballistic performance of the ARPA is investigated numerically.The failure modes of ARPA and projectiles are identified,and the defeating mechanism of the ARPA is explored.It is shown that the amorphous alloy coating is helpful for enhancing the target’s ballistic performance by seriously eroding and fracturing the penetrators.The effects of coating thickness,initial impact velocity and impact angle are also discussed for the target’s ballistic performance.The optimal design of coating thickness may be necessary for enhancing the ballistic resistance of ARPAs.展开更多
Many biological materials, such as wood and bone, possess helicoid microstructures at microscale, which can serve as reinforcing elements to transfer stress between crack surfaces and improve the fracture toughness of...Many biological materials, such as wood and bone, possess helicoid microstructures at microscale, which can serve as reinforcing elements to transfer stress between crack surfaces and improve the fracture toughness of their composites. Failure processes, such as fiber/matrix inter- face debonding and sliding associated with pull-out of helical fibers, are responsible mainly for the high energy dissipation needed for the fracture toughness enhancement. Here we present systemic analyses of the pull-out behavior of a helical fiber from an elastic matrix via the finite element method (FEM) simulation, with implications regarding the underlying toughening mechanism of helicoid microstructures. We find that, through their uniform curvature and torsion, helical fibers can provide high pull-out force and large interface areas, resulting in high energy dissipation that accounts, to a large extent, for the high toughness of biological materials. The helicity of fiber shape in terms of the helical angle has significant effects on the force-displacement relationships as well as the corresponding energy dissipation during fiber pull-out.展开更多
Oscillatory behavior of novel heterogeneous oscillators composed of carbon and molybdenum disulfide nanotubes (CNT@MST) was investigated for the first time, by using the methods of classical molecular dynamics. In t...Oscillatory behavior of novel heterogeneous oscillators composed of carbon and molybdenum disulfide nanotubes (CNT@MST) was investigated for the first time, by using the methods of classical molecular dynamics. In the proposed oscillators, a molybdenum disulfide nanotube (MST) was set as an outer tube, leading to better compatibility with the semiconductor industry standards. A smooth and stable oscillator with a frequency reaching 20 GHz was obtained based on a double-walled CNT@MST hetero-nanotube for a wide range of gap widths, indicating that the proposed oscillators perform much better than those built from double-walled carbon nanotubes (CNTs) that require a narrow range of gap widths. In addition, the oscillation characteristics of CNT@MST oscillators containing different inner and outer tube chirality were significantly better than those of CNT@MST oscillators containing two tubes with the same chirality.展开更多
Slender chiral filaments are ubiquitous in both artificial and biological materials.Due to their chiral microstructures,chiral filaments usually exhibit favorable properties such as superior elasticity and unusual str...Slender chiral filaments are ubiquitous in both artificial and biological materials.Due to their chiral microstructures,chiral filaments usually exhibit favorable properties such as superior elasticity and unusual stretch-twist coupling deformation.However,how these chiral microstructures affect the elastic behavior of filaments remains unclear.In this paper,a refined Cosserat rod model with misfit or mismatching of chirality induced by inhomogeneous arrangement of chiral microstructures incorporated is developed.Using the refined rod model,the force-displacement relationships and variation of structural chirality during the tensile processes of two typical helical structures,i.e.,single-strand helix and double-strand helix,are investigated.The results show that the misfit of chirality can lead to a bend-twist deformation with a high coupling degree,which makes the rod much“soft”when stretched.The chiral filaments undergo an unusual twist when stretched,corresponding to an obviously nonlinear variation of structural chirality.The work suggests that the misfit of chirality can be used to tune the elastic behavior of chiral filaments,which is helpful in guiding the design of flexible actuators and soft devices.展开更多
基金This work was supported by the National Natural Science Foundation of China(52372289,52102368,52072192 and 51977009)Regional Joint Fund for Basic Research and Applied Basic Research of Guangdong Province(No.2020SA001515110905).
文摘The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance.
基金supported by the National Natural Science Foundation of China(Nos.11472191,11172207,and 11272230)
文摘Chiral microstructures exist widely in natural biological materials such as wood, bone, and climbing tendrils. The helical shape of such microstructures plays an important role in stress transfer between fiber and matrix,and in the mechanical properties of biological materials. In this paper, helical fiber fragmentation behavior is studied numerically using the finite-element method(FEM), and then, the effects of helical shape on fiber deformation and fracture,and the corresponding mechanical mechanisms are investigated. The results demonstrate that, to a large degree, the initial microfibril angle(MFA) determines the elastic deformation and fracture behavior of fibers. For fibers with a large MFA, the interfacial area usually has large values, inducing a relatively low fragment density during fiber fragmentation. This work may be helpful in understanding the relationship between microstructure and mechanical property in biological materials, and in the design and fabrication of bio-inspired advanced functional materials.
基金the National Natural Science Foundation of China(10472082).
文摘This paper presents a hybrid Trefftz (HT) boundary element method (BEM) by using two indirect techniques for mode III fracture problems. Two Trefftz complete functions of Laplace equation for normal elements and a special purpose Trefftz function for crack elements are proposed in deriving the Galerkin and the collocation techniques of HT BEM. Then two auxiliary functions are introduced to improve the accuracy of the displacement field near the crack tips, and stress intensity factor (SIF) is evaluated by local crack elements as well. Furthermore, numerical examples are given, including comparisons of the present results with the analytical solution and the other numerical methods, to demonstrate the efficiency for different boundary conditions and to illustrate the convergence influenced by several parameters. It shows that HT BEM by usingthe Galerkin and the collocation techniques is effective for mode III fracture problems.
基金supported by the National Natural Science Foundation of China(Grant Nos.12020101001,12021002,12372324,and 12272239)supported by the National Innovation and Entrepreneurship Training Program for College Students(No.202210056136).
文摘The multi-layer cylindrical helicoidal fiber structure(MCHFS)exists widely in biological materials such as bone and wood at the microscale.MCHFSs typically function as reinforcing elements to enhance the toughness of materials.In this study,we establish a shear lag-based pullout model of the cylindrical helicoidal fiber(CHF)for investigating interlayer stress transfer and debonding behaviors,with implications regarding the underlying toughening mechanism of MCHFS.Based on the shear lag assumptions,analytical solutions for the stress and displacement fields of the MCHFS during the pullout are derived by considering the CHF as a cylindrically monoclinic material and verified through the 3D finite element simulation.It is found that the helical winding of CHF results in both axial and hoop interlayer shear stresses.Both the helical winding angle and the elastic moduli of the fiber and matrix have significant influences on interlayer stress transfer.This work reveals a new interlayer stress transfer mechanism in the MCHFS existing widely in biological materials.
文摘The degree and scope of constraints imposed by International Organizations(IOs)on States are increasing,and identifying the factors affecting the IOs’stances on States is helpful to enhance the state's discourse power and influence in the international community.First,by coding the records of Regular Press Conferences of the Speaking Office of the Chinese Ministry of Foreign Affairs during the period of 20182022,we obtained a dataset of IOs’stances on China-related events.Second,we constructed political relation,economic relation,and humanistic relation indicators to complement the influence factors,adopted the Bayesian logit model,and applied the Monte Carlo Markov chain algorithm and Gibbs sampling to analyze the probability of IOs’positive stances towards China.The result shows that IOs’category,length of establishment,functional position,and relationship with China are all related to their tendency of making a statement about China.In terms of the heterogeneity of event types,forum-type IOs are significantly inclined to give positive assessment compared to service-type IOs on events focusing on China's own development.Further analysis reveals that the model for analyzing and predicting the attitudes of IOs is more effective when the international situation is in a stable period.
基金supported by the National Natural Science Foundation of China(Grant Nos.12020101001,12021002,11890680,and 11872273)Tianjin Research Program of Application Foundation and Advanced Technology(Grant No.19JCYBJC19300).
基金financially supported by Affiliated Cancer Hospital&Institute of Guangzhou Medical University Clinical Research 5555 Program,China[IIT-2020-002(FL5)]Guangzhou Regional Clinical Characteristic Technology Project,China(2023C-TS06).
文摘Objective:To analyze the association between iterative decomposition of water and fat with echo asymmetry and least-squares estimation quantification sequence(IDEAL-IQ)magnetic resonance imaging(MRI)of bone marrow fat fraction and bone marrow reserve function during concurrent chemoradiotherapy for cervical cancer.Methods:The study retrospectively analyzed twenty-six patients with stage IB1 to IVA cervical cancer treated between February 2020 and November 2020.All patients received concurrent chemoradiotherapy that included platinum alone or combined paclitaxel and platinum.Pelvic IDEAL-IQ MRI(plain and enhanced)was performed before and after treatment.Regions of interest,including the fifth lumbar vertebra,sacrum,ilium,ischium,and femoral neck,were manually delineated,and the bone marrow fat fraction was measured.Peripheral blood cell counts were recorded during treatment,and the relationship between the fat fraction values and changes in the blood cell counts was explored.Results:IDEAL-IQ MRI bone marrow fat fraction was associated with platelet nadir and platelet decline during treatment.The average pelvic bone marrow fat fraction before chemoradiotherapy was moderately negatively correlated with platelet count nadir during concurrent chemoradiotherapy(r=-0.450,P?0.021).The change in average pelvic bone marrow fat fraction through chemoradiotherapy was moderately positively correlated with the degree of thrombocytopenia(r=0.399,P=0.044).Conclusion:Bone marrow fat content quantified by IDEAL-IQ was associated with platelet count nadir and the degree of thrombocytopenia in patients with cervical cancer undergoing concurrent chemoradiotherapy.
基金The project supported by the National Natural Science Foundation of China(Nos.10872011 and 11172012)the Municipal Natural Science Foundation of Beijing(No.3092006)
文摘Chemo-mechanical coupling exists in a lot of intelligent materials including hy- drogels, biological tissues and other soft materials. These materials are able to respond to ex- ternal stimulus, such as temperature, chemical concentration, and pH value. In this paper, a one-dimensional theoretical model for chemo-mechanical coupling is proposed for analyzing the uniaxial stress/strain state of coupling materials. Based on the chemo-mechanical coupled gov- erning equation, the displacement function and concentration function are derived and the stress and chemical potential are obtained. It is shown that the present chemo-mechanical theory can characterize the chemo-mechanical coupling behavior of intelligent materials.
基金support from the ACT node of the Australian National Fabrication Facility(ANFF)and,particularlysupport from an ANU PhD scholarship+2 种基金the Office of Naval Research(USA)under grant number N00014-14-1-0300the Australian Research Council(grant number DE140100805)the ANU Major Equipment Committee.
文摘Two-dimensional(2D)materials have emerged as promising candidates for miniaturized optoelectronic devices due to their strong inelastic interactions with light.On the other hand,a miniaturized optical system also requires strong elastic light–matter interactions to control the flow of light.Here we report that a single-layer molybdenum disulfide(MoS2)has a giant optical path length(OPL),around one order of magnitude larger than that from a single-layer of graphene.Using such giant OPL to engineer the phase front of optical beams we have demonstrated,to the best of our knowledge,the world’s thinnest optical lens consisting of a few layers of MoS2 less than 6.3 nm thick.By taking advantage of the giant elastic scattering efficiency in ultra-thin high-index 2D materials,we also demonstrated high-efficiency gratings based on a single-or few-layers of MoS2.The capability of manipulating the flow of light in 2D materials opens an exciting avenue towards unprecedented miniaturization of optical components and the integration of advanced optical functionalities.More importantly,the unique and large tunability of the refractive index by electric field in layered MoS2 will enable various applications in electrically tunable atomically thin optical components,such as micro-lenses with electrically tunable focal lengths,electrical tunable phase shifters with ultra-high accuracy,which cannot be realized by conventional bulk solids.
基金The authors gratefully acknowledge the financial support of NSFC(11972281,11872291,11572234,11502189)Opening Project of Science and Technology on Transient Impact Laboratory(614260601010117)+1 种基金Natural Science Basic Research Plan in Shaanxi Province of China(2020JM-034)China Postdoctoral Science Foundation funded project(2018M643621).
文摘A new concept of lightweight structure,namely amorphous-alloy-reinforced perforated armor(ARPA)consisting of the amorphous alloy coating and perforated metal substrate plate,is proposed.The ballistic performance of the ARPA is investigated numerically.The failure modes of ARPA and projectiles are identified,and the defeating mechanism of the ARPA is explored.It is shown that the amorphous alloy coating is helpful for enhancing the target’s ballistic performance by seriously eroding and fracturing the penetrators.The effects of coating thickness,initial impact velocity and impact angle are also discussed for the target’s ballistic performance.The optimal design of coating thickness may be necessary for enhancing the ballistic resistance of ARPAs.
基金Project supported by the National Basic Research Program of China(No.2012CB937500)the National Natural Science Foundation of China(Nos.11272230,11472191 and 11172207)
文摘Many biological materials, such as wood and bone, possess helicoid microstructures at microscale, which can serve as reinforcing elements to transfer stress between crack surfaces and improve the fracture toughness of their composites. Failure processes, such as fiber/matrix inter- face debonding and sliding associated with pull-out of helical fibers, are responsible mainly for the high energy dissipation needed for the fracture toughness enhancement. Here we present systemic analyses of the pull-out behavior of a helical fiber from an elastic matrix via the finite element method (FEM) simulation, with implications regarding the underlying toughening mechanism of helicoid microstructures. We find that, through their uniform curvature and torsion, helical fibers can provide high pull-out force and large interface areas, resulting in high energy dissipation that accounts, to a large extent, for the high toughness of biological materials. The helicity of fiber shape in terms of the helical angle has significant effects on the force-displacement relationships as well as the corresponding energy dissipation during fiber pull-out.
文摘Oscillatory behavior of novel heterogeneous oscillators composed of carbon and molybdenum disulfide nanotubes (CNT@MST) was investigated for the first time, by using the methods of classical molecular dynamics. In the proposed oscillators, a molybdenum disulfide nanotube (MST) was set as an outer tube, leading to better compatibility with the semiconductor industry standards. A smooth and stable oscillator with a frequency reaching 20 GHz was obtained based on a double-walled CNT@MST hetero-nanotube for a wide range of gap widths, indicating that the proposed oscillators perform much better than those built from double-walled carbon nanotubes (CNTs) that require a narrow range of gap widths. In addition, the oscillation characteristics of CNT@MST oscillators containing different inner and outer tube chirality were significantly better than those of CNT@MST oscillators containing two tubes with the same chirality.
基金the National Natural Science Foundation of China(Grant Nos.12020101001,12021002,11872273,and 11890680)Tianjin Research Program of Application Foundation and Advanced Technology(Grant No.19JCYBJC19300).
文摘Slender chiral filaments are ubiquitous in both artificial and biological materials.Due to their chiral microstructures,chiral filaments usually exhibit favorable properties such as superior elasticity and unusual stretch-twist coupling deformation.However,how these chiral microstructures affect the elastic behavior of filaments remains unclear.In this paper,a refined Cosserat rod model with misfit or mismatching of chirality induced by inhomogeneous arrangement of chiral microstructures incorporated is developed.Using the refined rod model,the force-displacement relationships and variation of structural chirality during the tensile processes of two typical helical structures,i.e.,single-strand helix and double-strand helix,are investigated.The results show that the misfit of chirality can lead to a bend-twist deformation with a high coupling degree,which makes the rod much“soft”when stretched.The chiral filaments undergo an unusual twist when stretched,corresponding to an obviously nonlinear variation of structural chirality.The work suggests that the misfit of chirality can be used to tune the elastic behavior of chiral filaments,which is helpful in guiding the design of flexible actuators and soft devices.