Urea generation through electrochemical CO_(2) and NO_(3)~-co-reduction reaction(CO_(2)NO_(3)RR)is still limited by either the low selectivity or yield rate of urea.Herein,we report copper carbonate hydroxide(Cu_2(OH)...Urea generation through electrochemical CO_(2) and NO_(3)~-co-reduction reaction(CO_(2)NO_(3)RR)is still limited by either the low selectivity or yield rate of urea.Herein,we report copper carbonate hydroxide(Cu_2(OH)_2CO_(3))as an efficient CO_(2)NO_(3)RR electrocatalyst with an impressive urea Faradaic efficiency of45.2%±2.1%and a high yield rate of 1564.5±145.2μg h~(-1)mg_(cat)~(-1).More importantly,H_(2) evolution is fully inhibited on this electrocatalyst over a wide potential range between-0.3 and-0.8 V versus reversible hydrogen electrode.Our thermodynamic simulation reveals that the first C-N coupling follows a unique pathway on Cu_2(OH)_2CO_(3) by combining the two intermediates,~*COOH and~*NHO.This work demonstrates that high selectivity and yield rate of urea can be simultaneously achieved on simple Cu-based electrocatalysts in CO_(2)NO_(3)RR,and provide guidance for rational design of more advanced catalysts.展开更多
The electrochemical reduction of CO_(2) towards hydrocarbons is a promising technology that can utilize CO_(2) and prevent its atmospheric accumulation while simultaneously storing renewable en‐ergy.However,current C...The electrochemical reduction of CO_(2) towards hydrocarbons is a promising technology that can utilize CO_(2) and prevent its atmospheric accumulation while simultaneously storing renewable en‐ergy.However,current CO_(2) electrolyzers remain impractical on a large scale due to the low current densities and faradaic efficiencies(FE)on various electrocatalysts.In this study,hybrid HKUST‐1 metal‐organic framework‒fluorinated imidazolium‐based room temperature ionic liquid(RTIL)electrocatalysts are designed to selectively reduce CO_(2) to CH_(4).An impressive FE of 65.5%towards CH_(4) at-1.13 V is achieved for the HKUST‐1/[BMIM][PF_(6)]hybrid,with a stable FE greater than 50%maintained for at least 9 h in an H‐cell.The observed improvements are attributed to the increased local CO_(2) concentration and the improved CO_(2)‐to‐CH_(4) thermodynamics in the presence of the RTIL molecules adsorbed on the HKUST‐1‐derived Cu clusters.These findings offer a novel approach of immobilizing RTIL co‐catalysts within porous frameworks for CO_(2) electroreduction applications.展开更多
研发长效稳定、pH适应性强的析氢反应(HER)催化剂对实现大规模制氢具有重要意义.界面工程是研发高效HER催化剂的有效策略之一.本文成功构建了海胆状异质结构催化剂CoTe-CoP/NF.CoTe和CoP的协同作用不仅优化了电子结构、暴露了更多的活...研发长效稳定、pH适应性强的析氢反应(HER)催化剂对实现大规模制氢具有重要意义.界面工程是研发高效HER催化剂的有效策略之一.本文成功构建了海胆状异质结构催化剂CoTe-CoP/NF.CoTe和CoP的协同作用不仅优化了电子结构、暴露了更多的活性位点,而且有效地提高了催化剂的亲水性和疏气性.密度泛函理论计算表明:CoTe与CoP之间的相互作用有效地降低了水的解离能垒,同时增强了对H~*的吸附.这些结果使得CoTe-CoP/NF在整个pH范围内具有优异的HER性能和催化稳定性.在酸性、碱性和中性介质中,CoTe-CoP/NF电极驱动10 mA cm^(-2)的电流密度仅需51、53和75 mV的过电位.总之,本工作为在全pH范围内构建高性能HER催化剂提供了一种界面工程新策略.展开更多
The electrochemical reduction reaction of carbon dioxide(CO_(2)RR)is considered to be an effective way to realize carbon neutrality.As a type of intensively studied materials,covalent organic frameworks(COFs)with a tu...The electrochemical reduction reaction of carbon dioxide(CO_(2)RR)is considered to be an effective way to realize carbon neutrality.As a type of intensively studied materials,covalent organic frameworks(COFs)with a tunable pore structure and various functional groups are promising catalysts for CO_(2)RR.Herein,COF synthesized by 2,6‐diaminoanthraquinone and 2,4,6‐triformylphloroglucinol is employed to assist the synthesis of electrocatalysts from Cu single atoms(SAs)to nanoclusters by controlling the electrodeposition.A tandem catalyst for CO_(2)‐to‐CH4 conversion is thus achieved by the Cu nanoclusters dispersed among the isolated Cu SAs in the COF network.It is proposed that CO_(2) is first reduced to CO over the atomically isolated Cu SAs,followed by diffusion onto the neighboring Cu nanoclusters for further reduction into CH4.In addition,mechanistic analysis suggests that the coordinated K^(+)ions on the COF network promote the activation of CO_(2) and the adsorption of reaction intermediates,thus realizing the suppressed hydrogen evolution reaction and selective production of CH4.This study presents a new insight of COFs for the confined synthesis of a tunable SA to nanocluster electrocatalysts,disclosing the great potential of COFs in electrocatalysis.展开更多
Green reactions not only provide us chemical products without any pollution,but also offer us the viable technology to realize difficult tasks in normal conditions.Photo-,photoelectro-,and electrocatalytic reactions a...Green reactions not only provide us chemical products without any pollution,but also offer us the viable technology to realize difficult tasks in normal conditions.Photo-,photoelectro-,and electrocatalytic reactions are indeed powerful tools to help us to embrace bright future.Especially,some gas-involved reactions are extremely useful to change our life environments from energy systems to liquid fuels and cost-effective products,such as H2 evolution(H2 production),02 evolution/reduction,CO2 reduction,N2 reduction(or N2 fixation) reactions.We can provide fuel cells clean H2 for electric vehicles from H2 evolution reaction(HER),at the same time,we also need highly efficient 02 reduction reaction(ORR) in fuel cells for improving the reaction kinetics.Moreover,we can get the clean oxidant O2 from water through O2 evolution reaction(OER),and carry out some reactions without posing any pollution to reaction systems.Furthermore,we can translate the greenhouse gas CO2 into useful liquid fuels through CO2 reduction reaction(CRR).Last but not the least,we can get ammonia from N2 reduction reaction(NRR),which can decrease energy input compared to the traditional Hubble process.These reactions,such as HER,ORR,OER,CRR and NRR could be realized through solar-,photoelectro-and electro-assisted ways.For them,the catalysts used play crucial roles in determining the efficiency and kinds of products,so we should consider the efficiency of catalysts.However,the cost,synthetic methods of catalysts should also be considered.Nowadays,significant progress has been achieved,however,many challenges still exist,reaction systems,catalysts underlying mechanisms,and so on.As extremely active fields,we should pay attention to them.Under the background,it has motivated us to contribute with a roadmap on ’GasInvolved Photo-and Electro-Catalysis’.展开更多
基金supported by the Research Grants Council(26206115,16304821 and 16309418)the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(SMSEGL20SC01)+2 种基金the Innovation and Technology Commission(grant no.ITC-CNERC14EG03)of the Hong Kong Special Administrative Regionthe Hong Kong Postdoctoral Fellowship Scheme(HKUST PDFS2021-4S12 and HKUST PDFS2021-6S08)the support from the Shenzhen fundamental research funding(JCYJ20210324115809026,20200925154115001,JCYJ20200109141216566)。
文摘Urea generation through electrochemical CO_(2) and NO_(3)~-co-reduction reaction(CO_(2)NO_(3)RR)is still limited by either the low selectivity or yield rate of urea.Herein,we report copper carbonate hydroxide(Cu_2(OH)_2CO_(3))as an efficient CO_(2)NO_(3)RR electrocatalyst with an impressive urea Faradaic efficiency of45.2%±2.1%and a high yield rate of 1564.5±145.2μg h~(-1)mg_(cat)~(-1).More importantly,H_(2) evolution is fully inhibited on this electrocatalyst over a wide potential range between-0.3 and-0.8 V versus reversible hydrogen electrode.Our thermodynamic simulation reveals that the first C-N coupling follows a unique pathway on Cu_2(OH)_2CO_(3) by combining the two intermediates,~*COOH and~*NHO.This work demonstrates that high selectivity and yield rate of urea can be simultaneously achieved on simple Cu-based electrocatalysts in CO_(2)NO_(3)RR,and provide guidance for rational design of more advanced catalysts.
文摘The electrochemical reduction of CO_(2) towards hydrocarbons is a promising technology that can utilize CO_(2) and prevent its atmospheric accumulation while simultaneously storing renewable en‐ergy.However,current CO_(2) electrolyzers remain impractical on a large scale due to the low current densities and faradaic efficiencies(FE)on various electrocatalysts.In this study,hybrid HKUST‐1 metal‐organic framework‒fluorinated imidazolium‐based room temperature ionic liquid(RTIL)electrocatalysts are designed to selectively reduce CO_(2) to CH_(4).An impressive FE of 65.5%towards CH_(4) at-1.13 V is achieved for the HKUST‐1/[BMIM][PF_(6)]hybrid,with a stable FE greater than 50%maintained for at least 9 h in an H‐cell.The observed improvements are attributed to the increased local CO_(2) concentration and the improved CO_(2)‐to‐CH_(4) thermodynamics in the presence of the RTIL molecules adsorbed on the HKUST‐1‐derived Cu clusters.These findings offer a novel approach of immobilizing RTIL co‐catalysts within porous frameworks for CO_(2) electroreduction applications.
基金supported by Outstanding Talent Fund from Beijing University of Chemical Technology。
文摘研发长效稳定、pH适应性强的析氢反应(HER)催化剂对实现大规模制氢具有重要意义.界面工程是研发高效HER催化剂的有效策略之一.本文成功构建了海胆状异质结构催化剂CoTe-CoP/NF.CoTe和CoP的协同作用不仅优化了电子结构、暴露了更多的活性位点,而且有效地提高了催化剂的亲水性和疏气性.密度泛函理论计算表明:CoTe与CoP之间的相互作用有效地降低了水的解离能垒,同时增强了对H~*的吸附.这些结果使得CoTe-CoP/NF在整个pH范围内具有优异的HER性能和催化稳定性.在酸性、碱性和中性介质中,CoTe-CoP/NF电极驱动10 mA cm^(-2)的电流密度仅需51、53和75 mV的过电位.总之,本工作为在全pH范围内构建高性能HER催化剂提供了一种界面工程新策略.
基金Innovation and Technology Commission of the Hong Kong Special Administrative Region,Grant/Award Number:ITCCNERC14EG03Research Grants Council,University Grants Committee,Grant/Award Numbers:16309418,26206115,HKUST PDFS2021‐4S12,HKUST PDFS2021‐6S08。
文摘The electrochemical reduction reaction of carbon dioxide(CO_(2)RR)is considered to be an effective way to realize carbon neutrality.As a type of intensively studied materials,covalent organic frameworks(COFs)with a tunable pore structure and various functional groups are promising catalysts for CO_(2)RR.Herein,COF synthesized by 2,6‐diaminoanthraquinone and 2,4,6‐triformylphloroglucinol is employed to assist the synthesis of electrocatalysts from Cu single atoms(SAs)to nanoclusters by controlling the electrodeposition.A tandem catalyst for CO_(2)‐to‐CH4 conversion is thus achieved by the Cu nanoclusters dispersed among the isolated Cu SAs in the COF network.It is proposed that CO_(2) is first reduced to CO over the atomically isolated Cu SAs,followed by diffusion onto the neighboring Cu nanoclusters for further reduction into CH4.In addition,mechanistic analysis suggests that the coordinated K^(+)ions on the COF network promote the activation of CO_(2) and the adsorption of reaction intermediates,thus realizing the suppressed hydrogen evolution reaction and selective production of CH4.This study presents a new insight of COFs for the confined synthesis of a tunable SA to nanocluster electrocatalysts,disclosing the great potential of COFs in electrocatalysis.
基金The financial support from the National Natural Science Foundation of China (Nos. 51772312, 21671197)
文摘Green reactions not only provide us chemical products without any pollution,but also offer us the viable technology to realize difficult tasks in normal conditions.Photo-,photoelectro-,and electrocatalytic reactions are indeed powerful tools to help us to embrace bright future.Especially,some gas-involved reactions are extremely useful to change our life environments from energy systems to liquid fuels and cost-effective products,such as H2 evolution(H2 production),02 evolution/reduction,CO2 reduction,N2 reduction(or N2 fixation) reactions.We can provide fuel cells clean H2 for electric vehicles from H2 evolution reaction(HER),at the same time,we also need highly efficient 02 reduction reaction(ORR) in fuel cells for improving the reaction kinetics.Moreover,we can get the clean oxidant O2 from water through O2 evolution reaction(OER),and carry out some reactions without posing any pollution to reaction systems.Furthermore,we can translate the greenhouse gas CO2 into useful liquid fuels through CO2 reduction reaction(CRR).Last but not the least,we can get ammonia from N2 reduction reaction(NRR),which can decrease energy input compared to the traditional Hubble process.These reactions,such as HER,ORR,OER,CRR and NRR could be realized through solar-,photoelectro-and electro-assisted ways.For them,the catalysts used play crucial roles in determining the efficiency and kinds of products,so we should consider the efficiency of catalysts.However,the cost,synthetic methods of catalysts should also be considered.Nowadays,significant progress has been achieved,however,many challenges still exist,reaction systems,catalysts underlying mechanisms,and so on.As extremely active fields,we should pay attention to them.Under the background,it has motivated us to contribute with a roadmap on ’GasInvolved Photo-and Electro-Catalysis’.