The chloride channel 7 gene(CLC 7)of the Hong Kong oyster Crassostrea hongkongensis was cloned and named ChCLC 7.The cDNA was 2572 bp in length,with a 5′non-coding region containing 25 bp,a 3′non-coding region conta...The chloride channel 7 gene(CLC 7)of the Hong Kong oyster Crassostrea hongkongensis was cloned and named ChCLC 7.The cDNA was 2572 bp in length,with a 5′non-coding region containing 25 bp,a 3′non-coding region containing 327 bp,and an open reading frame of 2298 bp.ChCLC 7 has 96.8%and 92.1%homology with CLC 7 of Crassostrea gigas and Crassostrea virginica,respectively,and it was clustered with CLC 7 of C.gigas and C.virginica.QRT-PCR showed that ChCLC 7 was expressed in all eight tissues,with the highest in adductor muscle and second in gill.The ChCLC 7 expression pattern in gill was altered significantly under high salinity stress with an overall upward and then downward trend.After RNA interference,the expression of ChCLC 7 and survival rate of oyster under high salinity stress was reduced significantly,and so did the concentration of hemolymph chloride ion in 48-96 h after RNA interference.We believed that ChCLC 7 could play an important role in osmoregulation of C.hongkongensis by regulating Cl^(-)transport.This study provided data for the analysis of molecular mechanism against oyster salinity stress.展开更多
The oxidation roasting process of molybdenum concentrate has significant advantages in industrial applications.However,utilization of low-grade mineral has many problems because it is more complex than the standard co...The oxidation roasting process of molybdenum concentrate has significant advantages in industrial applications.However,utilization of low-grade mineral has many problems because it is more complex than the standard concentrate.In this study,the oxidation behaviors of powdery rhenium-bearing low-grade molybdenum concentrate were investigated through thermodynamic calculation,roasting experiments,thermogravimetric analysis,and phase analysis.The results obtained show that oxidation of MoS2 begins at 450℃,and MoO3 reacts with metal-oxide forming molybdate at 600℃.Finally,MoO3 can be dissolved in ammonia with a maximum content of approximately 80%.The volatile speed of Re was considerably slower than the oxidation speed of MoS2 because the nonvolatile products ReO2 and ReO3 were generated in reactions among MoS2,SO2,and Re2O7.The final volatilization rate of Re was almost 70%.This study determined the problems related to the roasting of low-grade molybdenum concentrate,which lays the scientific foundations for subsequent enhancement of molybdenum and rhenium extraction.展开更多
Crystalline/amorphous nanolaminate is an effective strategy to improve the mechanical properties of metallic materials,but the underlying deformation mechanism is still under the way of exploring.Here,the mechanical p...Crystalline/amorphous nanolaminate is an effective strategy to improve the mechanical properties of metallic materials,but the underlying deformation mechanism is still under the way of exploring.Here,the mechanical properties and plastic deformation mechanism of Ti/TiCu dual-phase nanolaminates(DPNLs)with different layer thicknesses are investigated using molecular dynamics simulations.The results indicate that the influence of the layer thickness on the plastic deformation mechanism in crystalline layer is negligible,while it affects the plastic deformation mechanism of amorphous layers distinctly.The crystallization of amorphous TiCu is exhibited in amorphous parts of the Ti/TiCu DPNLs,which is inversely proportional to the layer thickness.It is observed that the crystallization of the amorphous TiCu is a process driven by stress and heat.Young's moduli for the Ti/TiCu DPNLs are higher than those of composite material due to the amorphous/crystalline interfaces.Furthermore,the main plastic deformation mechanism in crystalline part:grain reorientation,transformation from hexagonal-close-packed-Ti to face-centered cubic-Ti and body-centered cubic-Ti,has also been displayed in the present work.The results may provide a guideline for design of high-performance Ti and its alloy.展开更多
Tensile behaviors of Ti/Ni nanolaminate with model-I crack are investigated by molecular dynamics simulations.The Ti/Ni nanolaminates with center crack either in Ti layer or in Ni layer under different loading directi...Tensile behaviors of Ti/Ni nanolaminate with model-I crack are investigated by molecular dynamics simulations.The Ti/Ni nanolaminates with center crack either in Ti layer or in Ni layer under different loading directions are utilized to systematically study the mechanical performance of the cracked material.The results indicate that pre-existing crack dramatically changes the plastic deformation mechanism of the Ti/Ni nanolaminate.Unlike the initial plastic deformation originating from the interface or weak Ti layer of the crack-free samples,the plastic behavior of cracked Ti/Ni nanolaminate first occurs at the crack tip due to the local stress concentration.Subsequent plastic deformation is dominated by the interaction between the crack and interface.The Ti/Ni interface not only impedes the movement of the initial plastic deformation carriers(dislocation,slip band,and deformation twinning)from the crack tip,but also promotes the movement of interfacial dislocations in the tension process.Microstructure evolution analysis further confirms that the plastic deformation mechanism transition is ascribed to the orientation-dependent tensile behavior at the crack tip,which is intrinsically attributed to the anisotropy of the certain crystal structure and loading direction of the cracked Ti/Ni nanolaminate.In addition,by analyzing the effects of different plastic deformation carriers on crack propagation in specific crystal,it can be discovered that the interfacial dislocations moving towards the crack tip can further promote the crack growth.展开更多
Using molecular dynamics simulations,the plastic deformation behavior of nanocrytalline Ti has been investigated under tension and compression normal to the{0001},{1010},and{1210}planes.The results indicate that the p...Using molecular dynamics simulations,the plastic deformation behavior of nanocrytalline Ti has been investigated under tension and compression normal to the{0001},{1010},and{1210}planes.The results indicate that the plastic deformation strongly depends on crystal orientation and loading directions.Under tension normal to basal plane,the deformation mechanism is mainly the grain reorientation and the subsequent deformation twinning.Under compression,the transformation of hexagonal-close packed(HCP)-Ti to face-centered cubic(FCC)-Ti dominates the deformation.When loading is normal to the prismatic planes(both{1010}and{1210}),the deformation mechanism is primarily the phase transformation among HCP,body-centered cubic(BCC),and FCC structures,regardless of loading mode.The orientation relations(OR)of{0001}HCP||{111}FCC and<1210>HCP||<110>FCC,and{1010}HCP||{110}FCC and<0001>HCP||<010>FCC between the HCP and FCC phases have been observed in the present work.For the transformation of HCP→BCC→HCP,the OR is{0001}α1||{110}β||{1010}α2(HCP phase before the critical strain is defined as α1-Ti,BCC phase is defined as β-Ti,and the HCP phase after the critical strain is defined as α2-Ti).Energy evolution during the various loading processes further shows the plastic anisotropy of nanocrystalline Ti is determined by the stacking order of the atoms.The results in the present work will promote the in-depth study of the plastic deformation mechanism of HCP materials.展开更多
Novel properties and applications of multilayered nanowires(MNWs)urge researchers to understand their mechanical behaviors comprehensively.Using the molecular dynamic simulation,tensile behaviors of Ti/Ni MNWs are inv...Novel properties and applications of multilayered nanowires(MNWs)urge researchers to understand their mechanical behaviors comprehensively.Using the molecular dynamic simulation,tensile behaviors of Ti/Ni MNWs are investigated under a series of layer thickness values(1.31,2.34,and 7.17 nm)and strain rates(1.0×10^(8)s^(-1)≤ε≤5.0×10^(10)s^(-1)).The results demonstrate that deformation mechanisms of isopachous Ti/Ni MNWs are determined by the layer thickness and strain rate.Four distinct strain rate regions in the tensile process can be discovered,which are small,intermediate,critical,and large strain rate regions.As the strain rate increases,the initial plastic behaviors transform from interface shear(the shortest sample)and grain reorientation(the longest sample)in small strain rate region to amorphization of crystalline structures(all samples)in large strain rate region.Microstructure evolutions reveal that the disparate tensile behaviors are ascribed to the atomic fractions of different structures in small strain rate region,and only related to collapse of crystalline atoms in high strain rate region.A layer thickness-strain rate-dependent mechanism diagram is given to illustrate the couple effect on the plastic deformation mechanisms of the isopachous nanowires.The results also indicate that the modulation ratio significantly affects the tensile properties of unequal Ti/Ni MNWs,but barely affect the plastic deformation mechanisms of the materials.The observations from this work will promote theoretical researches and practical applications of Ti/Ni MNWs.展开更多
The dual-phase amorphous/crystalline nanostructured model proves to be an effective method to improve the plasticity of Mg alloys.The purpose of this paper is to explore an approach to improving the ductility and stre...The dual-phase amorphous/crystalline nanostructured model proves to be an effective method to improve the plasticity of Mg alloys.The purpose of this paper is to explore an approach to improving the ductility and strength of Mg alloys at the same time.Here,the effect of amorphous phase strength,crystalline phase strength,and amorphous boundary(AB)spacing on the mechanical properties of dual-phase Mg alloys(DPMAs)under tensile loading are investigated by the molecular dynamics simulation method.The results confirm that the strength of DPMA can be significantly improved while its excellent plasticity is maintained by adjusting the strength of the amorphous phase or crystalline phase and optimizing the AB spacing.For the DPMA,when the amorphous phase(or crystalline phase)is strengthened to enhance its strength,the AB spacing should be increased(or reduced)to obtain superior plasticity at the same time.The results also indicate that the DPMA containing high strength amorphous phase exhibits three different deformation modes during plastic deformation with the increase of AB spacing.The research results will present a theoretical basis and early guidance for designing and developing the high-performance dual-phase hexagonal close-packed nanostructured metals.展开更多
Metallic nanolaminated materials possess excellent mechanical properties due to their unique modulation structures and interfacial properties.However,how microdefects affect their mechanical properties is still uncert...Metallic nanolaminated materials possess excellent mechanical properties due to their unique modulation structures and interfacial properties.However,how microdefects affect their mechanical properties is still uncertain.To evaluate the influences of void location(in the crystalline layer and the Ti/Ni interface),void diameter(d)and thickness of the intermediate layer(h)on overall tensile behaviors,various types of defective Ti/Ni nanolaminates with pre-existing void are established by the molecular dynamics method in this work.The results indicate that the strength and plastic deformation mechanisms are strongly dependent on those determinants.Yield stresses of Ti/Ni nanolaminates decrease distinctly with increasing void diameter,while peak stresses with a void in the crystalline layer decrease with increasing d/h.Different void locations lead eventually to disparate initial plastic deformation carriers around the void,and various evolutions in the microstructure of the defective Ti/Ni nanolaminates.The Ti/Ni interface plays a significant role in the tensile process.The semi-coherent interface impedes new grains and lattice dislocations from passing across the interface,while the incoherent interface facilitates dislocations generating and sliding along the interface,and absorbs the dislocations moving to the interface.The results also indicate that the strain rate significantly affects the evolution of the microstructure and the tensile properties of defective Ti/Ni nanolaminates.展开更多
The effect of biochar substituted for anthracite as reductant on magnetizing-roasting pyrite cinder was in- vestigated. The key of magnetizing-roasting is the gasification reaction between reductants and CO2. Since bi...The effect of biochar substituted for anthracite as reductant on magnetizing-roasting pyrite cinder was in- vestigated. The key of magnetizing-roasting is the gasification reaction between reductants and CO2. Since biochar could react with CO2 more rapidly at lower temperature, the reactivity of biochar is better than that of anthracite. The gasification of biochar could produce reducing condition of φco/(φco--φco2 ) about 10 %- 20 % between 700-- 800 ℃, which is in accord with the atmosphere and temperature of Fe2 O3 reduction. So it is beneficial to the reduc- tion of iron mineral of pyrite cinder. Compared with anthracite, bioehar could decrease the roasting temperature from 825 to 750 ℃ and roasting time from 20 to 15 min, which shows that a better effect of magnetization could be ob- tained in the condition of lower temperature and shorter time. Using biochar as reductant, iron concentrate extracted from pyrite cinder as about 64% iron grade could be produced, and the recovery is over 90% under the condition of above 90% grinding particle less than 0. 045 mm and magnetic intensity of 0. 124--0. 194 T.展开更多
In this study,unsupervised and supervised pattern recognition were implemented in combination to achieve real-time health monitoring.Unsupervised recognition(k-means++)was used to label the spectral characteristics of...In this study,unsupervised and supervised pattern recognition were implemented in combination to achieve real-time health monitoring.Unsupervised recognition(k-means++)was used to label the spectral characteristics of acoustic emission(AE)signals after completing the tensile tests at ambient temperature.Using in-plane tensile at 800 and 1000°C as implementing examples,supervised recognition(K-nearest neighbor(KNN))was used to identify damage mode in real time.According to the damage identification results,four main tensile damage modes of 2D C/SiC composites were identified:matrix cracking(122.6–201 kHz),interfacial debonding(201–294.4 kHz),interfacial sliding(20.6–122.6 kHz)and fiber breaking(294.4–1000 kHz).Additionally,the damage evolution mechanisms for the 2D C/SiC composites were analyzed based on the characteristics of AE energy accumulation curve during the in-plane tensile loading at ambient and elevated temperature with oxidation.Meanwhile,the energy of various damage modes was accurately calculated by harmonic wavelet packet and the damage degree of modes could be analyzed.The identification results show that compared with previous studies,using the AE analysis method,the method has higher sensitivity and accuracy.展开更多
基金Supported by the Natural Science Foundation of Guangxi Province(Nos.2023 GXNSFAA 026503,2018 GXNSFBA281201)the Guangxi Key Research and Development Program(No.GuikeAB21196030)+3 种基金the Marine Science Guangxi First-Class Subject,Beibu Gulf University(No.DRC002)the Scientific Research and Technology Development Plan Project of Qinzhou(Nos.202014842,20223637)the Science and Technology Major Project of Guangxi Province(No.AA17204095-10)the Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation,Beibu Gulf University(Nos.2020ZB09,2020ZB04)。
文摘The chloride channel 7 gene(CLC 7)of the Hong Kong oyster Crassostrea hongkongensis was cloned and named ChCLC 7.The cDNA was 2572 bp in length,with a 5′non-coding region containing 25 bp,a 3′non-coding region containing 327 bp,and an open reading frame of 2298 bp.ChCLC 7 has 96.8%and 92.1%homology with CLC 7 of Crassostrea gigas and Crassostrea virginica,respectively,and it was clustered with CLC 7 of C.gigas and C.virginica.QRT-PCR showed that ChCLC 7 was expressed in all eight tissues,with the highest in adductor muscle and second in gill.The ChCLC 7 expression pattern in gill was altered significantly under high salinity stress with an overall upward and then downward trend.After RNA interference,the expression of ChCLC 7 and survival rate of oyster under high salinity stress was reduced significantly,and so did the concentration of hemolymph chloride ion in 48-96 h after RNA interference.We believed that ChCLC 7 could play an important role in osmoregulation of C.hongkongensis by regulating Cl^(-)transport.This study provided data for the analysis of molecular mechanism against oyster salinity stress.
基金Projects(U1760107,U1660206)supported by the National Natural Science Foundation of ChinaProject(2013zzts064)supported by the Innovation Foundation for Postgraduate of Central South University,China
文摘The oxidation roasting process of molybdenum concentrate has significant advantages in industrial applications.However,utilization of low-grade mineral has many problems because it is more complex than the standard concentrate.In this study,the oxidation behaviors of powdery rhenium-bearing low-grade molybdenum concentrate were investigated through thermodynamic calculation,roasting experiments,thermogravimetric analysis,and phase analysis.The results obtained show that oxidation of MoS2 begins at 450℃,and MoO3 reacts with metal-oxide forming molybdate at 600℃.Finally,MoO3 can be dissolved in ammonia with a maximum content of approximately 80%.The volatile speed of Re was considerably slower than the oxidation speed of MoS2 because the nonvolatile products ReO2 and ReO3 were generated in reactions among MoS2,SO2,and Re2O7.The final volatilization rate of Re was almost 70%.This study determined the problems related to the roasting of low-grade molybdenum concentrate,which lays the scientific foundations for subsequent enhancement of molybdenum and rhenium extraction.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51902254 and 12072286)the Natural Science Foundation of Shaanxi Province,China(Grant Nos.2021JZ-53 and 2018JQ5108)the Scientific Research Program Funded by Shaanxi Provincial Education Department,China(Grant No.20JK0845)。
文摘Crystalline/amorphous nanolaminate is an effective strategy to improve the mechanical properties of metallic materials,but the underlying deformation mechanism is still under the way of exploring.Here,the mechanical properties and plastic deformation mechanism of Ti/TiCu dual-phase nanolaminates(DPNLs)with different layer thicknesses are investigated using molecular dynamics simulations.The results indicate that the influence of the layer thickness on the plastic deformation mechanism in crystalline layer is negligible,while it affects the plastic deformation mechanism of amorphous layers distinctly.The crystallization of amorphous TiCu is exhibited in amorphous parts of the Ti/TiCu DPNLs,which is inversely proportional to the layer thickness.It is observed that the crystallization of the amorphous TiCu is a process driven by stress and heat.Young's moduli for the Ti/TiCu DPNLs are higher than those of composite material due to the amorphous/crystalline interfaces.Furthermore,the main plastic deformation mechanism in crystalline part:grain reorientation,transformation from hexagonal-close-packed-Ti to face-centered cubic-Ti and body-centered cubic-Ti,has also been displayed in the present work.The results may provide a guideline for design of high-performance Ti and its alloy.
基金Project supported by the National Natural Science Foundation of China(Grant No.11572259)the Program for International Cooperation and Exchanges of Shaanxi Province,China(Grant No.2016KW-049)+1 种基金the Natural Science Foundation of Shaanxi Province,China(Grant No.2019JQ-827)the Scientific Research Program Funded by Shaanxi Provincial Education Department,China(Grant No.19JK0672).
文摘Tensile behaviors of Ti/Ni nanolaminate with model-I crack are investigated by molecular dynamics simulations.The Ti/Ni nanolaminates with center crack either in Ti layer or in Ni layer under different loading directions are utilized to systematically study the mechanical performance of the cracked material.The results indicate that pre-existing crack dramatically changes the plastic deformation mechanism of the Ti/Ni nanolaminate.Unlike the initial plastic deformation originating from the interface or weak Ti layer of the crack-free samples,the plastic behavior of cracked Ti/Ni nanolaminate first occurs at the crack tip due to the local stress concentration.Subsequent plastic deformation is dominated by the interaction between the crack and interface.The Ti/Ni interface not only impedes the movement of the initial plastic deformation carriers(dislocation,slip band,and deformation twinning)from the crack tip,but also promotes the movement of interfacial dislocations in the tension process.Microstructure evolution analysis further confirms that the plastic deformation mechanism transition is ascribed to the orientation-dependent tensile behavior at the crack tip,which is intrinsically attributed to the anisotropy of the certain crystal structure and loading direction of the cracked Ti/Ni nanolaminate.In addition,by analyzing the effects of different plastic deformation carriers on crack propagation in specific crystal,it can be discovered that the interfacial dislocations moving towards the crack tip can further promote the crack growth.
基金Project supported by the National Natural Science Foundation of China(Grant No.11572259)the Natural Science Foundation of Shaanxi Province,China(Grant Nos.2019JQ-827,2018JM1013,and 2018JQ5108)the Scientific Research Program Funded by Shaanxi Provincial Education Department,China(Grant No.19JK0672)。
文摘Using molecular dynamics simulations,the plastic deformation behavior of nanocrytalline Ti has been investigated under tension and compression normal to the{0001},{1010},and{1210}planes.The results indicate that the plastic deformation strongly depends on crystal orientation and loading directions.Under tension normal to basal plane,the deformation mechanism is mainly the grain reorientation and the subsequent deformation twinning.Under compression,the transformation of hexagonal-close packed(HCP)-Ti to face-centered cubic(FCC)-Ti dominates the deformation.When loading is normal to the prismatic planes(both{1010}and{1210}),the deformation mechanism is primarily the phase transformation among HCP,body-centered cubic(BCC),and FCC structures,regardless of loading mode.The orientation relations(OR)of{0001}HCP||{111}FCC and<1210>HCP||<110>FCC,and{1010}HCP||{110}FCC and<0001>HCP||<010>FCC between the HCP and FCC phases have been observed in the present work.For the transformation of HCP→BCC→HCP,the OR is{0001}α1||{110}β||{1010}α2(HCP phase before the critical strain is defined as α1-Ti,BCC phase is defined as β-Ti,and the HCP phase after the critical strain is defined as α2-Ti).Energy evolution during the various loading processes further shows the plastic anisotropy of nanocrystalline Ti is determined by the stacking order of the atoms.The results in the present work will promote the in-depth study of the plastic deformation mechanism of HCP materials.
基金Project supported by the National Natural Science Foundation of China(Grant No.11572259)the Natural Science Foundation of Shaanxi Province,China(Grant No.2019JQ-827)the Scientific Research Program Funded by Shaanxi Provincial Education Department,China(Grant No.19JK0672).
文摘Novel properties and applications of multilayered nanowires(MNWs)urge researchers to understand their mechanical behaviors comprehensively.Using the molecular dynamic simulation,tensile behaviors of Ti/Ni MNWs are investigated under a series of layer thickness values(1.31,2.34,and 7.17 nm)and strain rates(1.0×10^(8)s^(-1)≤ε≤5.0×10^(10)s^(-1)).The results demonstrate that deformation mechanisms of isopachous Ti/Ni MNWs are determined by the layer thickness and strain rate.Four distinct strain rate regions in the tensile process can be discovered,which are small,intermediate,critical,and large strain rate regions.As the strain rate increases,the initial plastic behaviors transform from interface shear(the shortest sample)and grain reorientation(the longest sample)in small strain rate region to amorphization of crystalline structures(all samples)in large strain rate region.Microstructure evolutions reveal that the disparate tensile behaviors are ascribed to the atomic fractions of different structures in small strain rate region,and only related to collapse of crystalline atoms in high strain rate region.A layer thickness-strain rate-dependent mechanism diagram is given to illustrate the couple effect on the plastic deformation mechanisms of the isopachous nanowires.The results also indicate that the modulation ratio significantly affects the tensile properties of unequal Ti/Ni MNWs,but barely affect the plastic deformation mechanisms of the materials.The observations from this work will promote theoretical researches and practical applications of Ti/Ni MNWs.
基金National Natural Science Foundation of China(Grant No.11572259)the Natural Science Foundation of Shaanxi Province,China(Grant Nos.2018JM101 and 2019JQ-827)the Program for Graduate Innovation Fund of Xi’an Shiyou University,China(Grant No.YCS19111004).
文摘The dual-phase amorphous/crystalline nanostructured model proves to be an effective method to improve the plasticity of Mg alloys.The purpose of this paper is to explore an approach to improving the ductility and strength of Mg alloys at the same time.Here,the effect of amorphous phase strength,crystalline phase strength,and amorphous boundary(AB)spacing on the mechanical properties of dual-phase Mg alloys(DPMAs)under tensile loading are investigated by the molecular dynamics simulation method.The results confirm that the strength of DPMA can be significantly improved while its excellent plasticity is maintained by adjusting the strength of the amorphous phase or crystalline phase and optimizing the AB spacing.For the DPMA,when the amorphous phase(or crystalline phase)is strengthened to enhance its strength,the AB spacing should be increased(or reduced)to obtain superior plasticity at the same time.The results also indicate that the DPMA containing high strength amorphous phase exhibits three different deformation modes during plastic deformation with the increase of AB spacing.The research results will present a theoretical basis and early guidance for designing and developing the high-performance dual-phase hexagonal close-packed nanostructured metals.
基金the National Natural Science Foundation of China(Grant No.12072286)the Natural Science Foundation of Shaanxi Province(No.2020JM-095 and 2021JM-045)Fundamental Research Funds for the Central Universities(No.G2020KY05112).
文摘Metallic nanolaminated materials possess excellent mechanical properties due to their unique modulation structures and interfacial properties.However,how microdefects affect their mechanical properties is still uncertain.To evaluate the influences of void location(in the crystalline layer and the Ti/Ni interface),void diameter(d)and thickness of the intermediate layer(h)on overall tensile behaviors,various types of defective Ti/Ni nanolaminates with pre-existing void are established by the molecular dynamics method in this work.The results indicate that the strength and plastic deformation mechanisms are strongly dependent on those determinants.Yield stresses of Ti/Ni nanolaminates decrease distinctly with increasing void diameter,while peak stresses with a void in the crystalline layer decrease with increasing d/h.Different void locations lead eventually to disparate initial plastic deformation carriers around the void,and various evolutions in the microstructure of the defective Ti/Ni nanolaminates.The Ti/Ni interface plays a significant role in the tensile process.The semi-coherent interface impedes new grains and lattice dislocations from passing across the interface,while the incoherent interface facilitates dislocations generating and sliding along the interface,and absorbs the dislocations moving to the interface.The results also indicate that the strain rate significantly affects the evolution of the microstructure and the tensile properties of defective Ti/Ni nanolaminates.
基金Item Sponsored by National Natural Science Foundation of China(51174253,51304245)
文摘The effect of biochar substituted for anthracite as reductant on magnetizing-roasting pyrite cinder was in- vestigated. The key of magnetizing-roasting is the gasification reaction between reductants and CO2. Since biochar could react with CO2 more rapidly at lower temperature, the reactivity of biochar is better than that of anthracite. The gasification of biochar could produce reducing condition of φco/(φco--φco2 ) about 10 %- 20 % between 700-- 800 ℃, which is in accord with the atmosphere and temperature of Fe2 O3 reduction. So it is beneficial to the reduc- tion of iron mineral of pyrite cinder. Compared with anthracite, bioehar could decrease the roasting temperature from 825 to 750 ℃ and roasting time from 20 to 15 min, which shows that a better effect of magnetization could be ob- tained in the condition of lower temperature and shorter time. Using biochar as reductant, iron concentrate extracted from pyrite cinder as about 64% iron grade could be produced, and the recovery is over 90% under the condition of above 90% grinding particle less than 0. 045 mm and magnetic intensity of 0. 124--0. 194 T.
基金the National Natural Science Foundation of China(Grant No.12172304)the 111 Project(Grant No.BP0719007).
文摘In this study,unsupervised and supervised pattern recognition were implemented in combination to achieve real-time health monitoring.Unsupervised recognition(k-means++)was used to label the spectral characteristics of acoustic emission(AE)signals after completing the tensile tests at ambient temperature.Using in-plane tensile at 800 and 1000°C as implementing examples,supervised recognition(K-nearest neighbor(KNN))was used to identify damage mode in real time.According to the damage identification results,four main tensile damage modes of 2D C/SiC composites were identified:matrix cracking(122.6–201 kHz),interfacial debonding(201–294.4 kHz),interfacial sliding(20.6–122.6 kHz)and fiber breaking(294.4–1000 kHz).Additionally,the damage evolution mechanisms for the 2D C/SiC composites were analyzed based on the characteristics of AE energy accumulation curve during the in-plane tensile loading at ambient and elevated temperature with oxidation.Meanwhile,the energy of various damage modes was accurately calculated by harmonic wavelet packet and the damage degree of modes could be analyzed.The identification results show that compared with previous studies,using the AE analysis method,the method has higher sensitivity and accuracy.