This research focused on the impact of mining on the permeability of key aquifuge (N2 laterite) that is widespread in the arid and semi-arid areas of northwestern China and is critical for preserving water resources...This research focused on the impact of mining on the permeability of key aquifuge (N2 laterite) that is widespread in the arid and semi-arid areas of northwestern China and is critical for preserving water resources. The impact of mining stress recovery on the permeability of cracked N2 laterite was assessed for parts of northwestern China that included the Jingle laterite and Baode laterite. The mineral compositions and swelling properties of the laterite at both locations were examined, and analytical results showed that the laterite contained abundant clay minerals. The Baode laterite exhibited higher expansibility than Jingle laterite. The triaxial creep permeability performance of laterite specimens with a prefabricated crack width of 1.0, 1.5, and 2.5 mm were tested. The results indicated that strain of cracked laterite all exhibited transient creep following each level of loading, and then unstable creep and stable creep. With the increase of loading, the transient creep deformation corresponding to each level of loading decreased, the unstable creep deformation produced by identical loading gradually and incrementally increased. The nonlinear power function equation was selected to fit creep grading curves which have high precision. The cracks within the laterite gradually closed with the stress recovery, and permeability gradually recovered. During the stress recovery, the narrower cracks exhibited a smaller change in permeability. However, for narrow cracks in mining soil, permeability recovered after mining stress when permeability was closer to initial permeability, and the Baode laterite showed greater recovery than that of the Jingle laterite.展开更多
In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation...In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation range as well as the fact that the shape of the overburden deformation area will change with the excavation length are ignored.In this paper,an improved key stratum theory(IKS theory)was proposed by fixing these two shortcomings.Then,a WFZ height prediction method based on IKS theory was established and applied.First,the range of overburden involved in the analysis was determined according to the tensile stress distribution range above the goaf.Second,the key stratum in the overburden involved in the analysis was identified through IKS theory.Finally,the tendency of the WFZ to develop upward was determined by judging whether or not the identified key stratum will break.The proposed method was applied and verified in a mining case study,and the reasons for the differences in the development patterns between the WFZs in coalfields in Northwest and East China were also fully explained by this method.展开更多
基金The study was jointly supported by the State Key Program of National Natural Science Foundation of China (Grant No. 41430643) and the National Key Basic Research Program of China (973 Program) (Grant No. 2015CB251601).
文摘This research focused on the impact of mining on the permeability of key aquifuge (N2 laterite) that is widespread in the arid and semi-arid areas of northwestern China and is critical for preserving water resources. The impact of mining stress recovery on the permeability of cracked N2 laterite was assessed for parts of northwestern China that included the Jingle laterite and Baode laterite. The mineral compositions and swelling properties of the laterite at both locations were examined, and analytical results showed that the laterite contained abundant clay minerals. The Baode laterite exhibited higher expansibility than Jingle laterite. The triaxial creep permeability performance of laterite specimens with a prefabricated crack width of 1.0, 1.5, and 2.5 mm were tested. The results indicated that strain of cracked laterite all exhibited transient creep following each level of loading, and then unstable creep and stable creep. With the increase of loading, the transient creep deformation corresponding to each level of loading decreased, the unstable creep deformation produced by identical loading gradually and incrementally increased. The nonlinear power function equation was selected to fit creep grading curves which have high precision. The cracks within the laterite gradually closed with the stress recovery, and permeability gradually recovered. During the stress recovery, the narrower cracks exhibited a smaller change in permeability. However, for narrow cracks in mining soil, permeability recovered after mining stress when permeability was closer to initial permeability, and the Baode laterite showed greater recovery than that of the Jingle laterite.
基金supported by the Key Projects of Natural Science Foundation of China(No.41931284)the Scientific Research Start-Up Fund for High-Level Introduced Talents of Anhui University of Science and Technology(No.2022yjrc21).
文摘In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation range as well as the fact that the shape of the overburden deformation area will change with the excavation length are ignored.In this paper,an improved key stratum theory(IKS theory)was proposed by fixing these two shortcomings.Then,a WFZ height prediction method based on IKS theory was established and applied.First,the range of overburden involved in the analysis was determined according to the tensile stress distribution range above the goaf.Second,the key stratum in the overburden involved in the analysis was identified through IKS theory.Finally,the tendency of the WFZ to develop upward was determined by judging whether or not the identified key stratum will break.The proposed method was applied and verified in a mining case study,and the reasons for the differences in the development patterns between the WFZs in coalfields in Northwest and East China were also fully explained by this method.