期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Improved PSO-Extreme Learning Machine Algorithm for Indoor Localization
1
作者 qiu wanqing Zhang Qingmiao +1 位作者 Zhao Junhui Yang Lihua 《China Communications》 SCIE CSCD 2024年第5期113-122,共10页
Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the rece... Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the received signal strength indication(RSSI)distance is accord with the location distance.Therefore,how to efficiently match the current RSSI of the user with the RSSI in the fingerprint database is the key to achieve high-accuracy localization.In this paper,a particle swarm optimization-extreme learning machine(PSO-ELM)algorithm is proposed on the basis of the original fingerprinting localization.Firstly,we collect the RSSI of the experimental area to construct the fingerprint database,and the ELM algorithm is applied to the online stages to determine the corresponding relation between the location of the terminal and the RSSI it receives.Secondly,PSO algorithm is used to improve the bias and weight of ELM neural network,and the global optimal results are obtained.Finally,extensive simulation results are presented.It is shown that the proposed algorithm can effectively reduce mean error of localization and improve positioning accuracy when compared with K-Nearest Neighbor(KNN),Kmeans and Back-propagation(BP)algorithms. 展开更多
关键词 extreme learning machine fingerprinting localization indoor localization machine learning particle swarm optimization
下载PDF
苏州市中学生疲劳现状及影响因素 被引量:4
2
作者 邱晚晴 徐勇 《中国学校卫生》 CAS 北大核心 2021年第6期910-913,共4页
目的了解苏州市青少年疲劳现状并分析影响因素,为采取应对措施改善青少年疲劳状况提供参考。方法采用分层整群随机抽样方法,在苏州市4市6区共20所学校抽取16109名初、高中学生进行一般资料调查及疲劳量表(FS-14)调查。结果青少年躯体疲... 目的了解苏州市青少年疲劳现状并分析影响因素,为采取应对措施改善青少年疲劳状况提供参考。方法采用分层整群随机抽样方法,在苏州市4市6区共20所学校抽取16109名初、高中学生进行一般资料调查及疲劳量表(FS-14)调查。结果青少年躯体疲劳、脑力疲劳得分及疲劳总分分别为(3.90±2.24)(2.26±1.71)(6.16±3.56)分。多元线性回归分析显示,性别、学段、自评学习成绩、学习时间、锻炼次数、锻炼时间、是否单亲、居住环境、家中是否有人常说疲劳,以及是否可以从身边人处得到支持均对青少年疲劳得分有影响(B值分别为0.35,1.16,-0.50,0.50,-0.26,-0.27,0.32,0.31,1.19,-0.49,P值均<0.01)。结论苏州市青少年疲劳得分相对较高。应针对青少年的疲劳问题制定相应的预防措施,减少疲劳症状对青少年身心健康造成的影响。 展开更多
关键词 疲劳 回归分析 青少年 问卷调查
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部