Building well-developed ion-conductive highways is highly desirable for anion exchange membranes(AEMs).Grafting side chain is a highly effective approach for constructing a well-defined phaseseparated morphological st...Building well-developed ion-conductive highways is highly desirable for anion exchange membranes(AEMs).Grafting side chain is a highly effective approach for constructing a well-defined phaseseparated morphological structure and forming unblocked ion pathways in AEMs for fast ion transport.Fluorination of side chains can further enhance phase separation due to the superhydrophobic nature of fluorine groups.However,their electronic effect on the alkaline stability of side chains and membranes is rarely reported.Here,fluorine-containing and fluorine-free side chains are introduced into the polyaromatic backbone in proper configuration to investigate the impact of the fluorine terminal group on the stability of the side chains and membrane properties.The poly(binaphthyl-co-p-terphenyl piperidinium)AEM(QBNp TP)has the highest molecular weight and most dimensional stability due to its favorable backbone arrangement among ortho-and meta-terphenyl based AEMs.Importantly,by introducing both a fluorinated piperidinium side chain and a hexane chain into the p-terphenyl-based backbone,the prepared AEM(QBNp TP-QFC)presents an enhanced conductivity(150.6 m S cm^(-1))and a constrained swelling at 80℃.The electronic effect of fluorinated side chains is contemplated by experiments and simulations.The results demonstrate that the presence of strong electro-withdrawing fluorine groups weakens the electronic cloud of adjacent C atoms,increasing OH^(-)attack on the C atom and improving the stability of piperidinium cations.Hence QBNp TP-QFC possesses a robust alkaline stability at 80℃(95.3%conductivity retention after testing in 2 M Na OH for 2160 h).An excellent peak power density of 1.44 W cm^(-2)and a remarkable durability at 80℃(4.5%voltage loss after 100 h)can be observed.展开更多
Temperate and high-latitude forests are carbon sinks and play pivotal roles in offsetting greenhouse gas emissions of CO2.However,uncertainty still exists for subtropical forests,especially in monsoon-prevalent easter...Temperate and high-latitude forests are carbon sinks and play pivotal roles in offsetting greenhouse gas emissions of CO2.However,uncertainty still exists for subtropical forests,especially in monsoon-prevalent eastern Asia.Earlier studies have depended on remote sensing,ecosystem modeling,carbon fluxes,or single period forest surveys to estimate carbon sequestration capacities,and the results vary significantly.This study was designed to utilize multi-period forest survey data to explore spatial-dynamics of biomass storage in subtropical forests of China.Jiangxi province,a region with over 60%subtropical forest cover,was selected as the case study site and is located in central east China.Based on forest inventory data 1984-2013,and the stock-difference and biomass expansion factor methods,the carbon storage and density,of arboreal forests,economic forests,bamboo forests,woodlands and shrubberies were estimated.The results show that carbon storage increased from 159.1 Tg C in 1988 to 276.1 TgC in 2013,making up 3.1-3.8%of carbon stored throughout China.Among the four types of forests,the amount of carbon stored was as follows:arboreal forest>economic forest>bamboo forest>woodland and shrubbery.Arboreal forests accounted for 64.0-79.4%of the total.Forest carbon density increased from 21.2 Mg C ha-1 in 1984 to26.2 Mg C ha-1 in 2013,equal to 61.2-70.2%of the average carbon density of China’s forests in the same period.Forest carbon storage in Jiangxi will reach 355.5 Tg C and 535.8 Tg C in 2020 and 2030,respectively,and forest carbon density is predicted to be 31.9 Mg C ha-1and 46.4 Mg C ha-1,respectively.As one of the few studies using multi-period data tracking biomass dynamics in Jiangxi province,the findings of this study may be used as a reference for other research.Using Jiangxi as a case study underlies the fact that subtropical forests in China have great carbon sequestration potential and have fundamental significance to offset global environmental change effects.展开更多
基金the financial support from the National Natural Science Foundation of China(22078272&22278340)。
文摘Building well-developed ion-conductive highways is highly desirable for anion exchange membranes(AEMs).Grafting side chain is a highly effective approach for constructing a well-defined phaseseparated morphological structure and forming unblocked ion pathways in AEMs for fast ion transport.Fluorination of side chains can further enhance phase separation due to the superhydrophobic nature of fluorine groups.However,their electronic effect on the alkaline stability of side chains and membranes is rarely reported.Here,fluorine-containing and fluorine-free side chains are introduced into the polyaromatic backbone in proper configuration to investigate the impact of the fluorine terminal group on the stability of the side chains and membrane properties.The poly(binaphthyl-co-p-terphenyl piperidinium)AEM(QBNp TP)has the highest molecular weight and most dimensional stability due to its favorable backbone arrangement among ortho-and meta-terphenyl based AEMs.Importantly,by introducing both a fluorinated piperidinium side chain and a hexane chain into the p-terphenyl-based backbone,the prepared AEM(QBNp TP-QFC)presents an enhanced conductivity(150.6 m S cm^(-1))and a constrained swelling at 80℃.The electronic effect of fluorinated side chains is contemplated by experiments and simulations.The results demonstrate that the presence of strong electro-withdrawing fluorine groups weakens the electronic cloud of adjacent C atoms,increasing OH^(-)attack on the C atom and improving the stability of piperidinium cations.Hence QBNp TP-QFC possesses a robust alkaline stability at 80℃(95.3%conductivity retention after testing in 2 M Na OH for 2160 h).An excellent peak power density of 1.44 W cm^(-2)and a remarkable durability at 80℃(4.5%voltage loss after 100 h)can be observed.
基金The work was supported by the National Natural Science Foundation of China(Grant Number:41463005)Key research and development program of Jiangxi province(Grant Number:20181ACG70021).
文摘Temperate and high-latitude forests are carbon sinks and play pivotal roles in offsetting greenhouse gas emissions of CO2.However,uncertainty still exists for subtropical forests,especially in monsoon-prevalent eastern Asia.Earlier studies have depended on remote sensing,ecosystem modeling,carbon fluxes,or single period forest surveys to estimate carbon sequestration capacities,and the results vary significantly.This study was designed to utilize multi-period forest survey data to explore spatial-dynamics of biomass storage in subtropical forests of China.Jiangxi province,a region with over 60%subtropical forest cover,was selected as the case study site and is located in central east China.Based on forest inventory data 1984-2013,and the stock-difference and biomass expansion factor methods,the carbon storage and density,of arboreal forests,economic forests,bamboo forests,woodlands and shrubberies were estimated.The results show that carbon storage increased from 159.1 Tg C in 1988 to 276.1 TgC in 2013,making up 3.1-3.8%of carbon stored throughout China.Among the four types of forests,the amount of carbon stored was as follows:arboreal forest>economic forest>bamboo forest>woodland and shrubbery.Arboreal forests accounted for 64.0-79.4%of the total.Forest carbon density increased from 21.2 Mg C ha-1 in 1984 to26.2 Mg C ha-1 in 2013,equal to 61.2-70.2%of the average carbon density of China’s forests in the same period.Forest carbon storage in Jiangxi will reach 355.5 Tg C and 535.8 Tg C in 2020 and 2030,respectively,and forest carbon density is predicted to be 31.9 Mg C ha-1and 46.4 Mg C ha-1,respectively.As one of the few studies using multi-period data tracking biomass dynamics in Jiangxi province,the findings of this study may be used as a reference for other research.Using Jiangxi as a case study underlies the fact that subtropical forests in China have great carbon sequestration potential and have fundamental significance to offset global environmental change effects.