The traction characteristics of the grouser, cutting the simulative soil of deepsea sediment, with different tooth widths, tooth heights, and ground pressures are studied with traction characteristic test apparatus. A...The traction characteristics of the grouser, cutting the simulative soil of deepsea sediment, with different tooth widths, tooth heights, and ground pressures are studied with traction characteristic test apparatus. A traction-displacement model is obtained by combining the analysis of the cutting mechanism. The results show that the tractiondisplacement curves of grousers with different tooth widths, tooth heights, and ground pressures have the same changing trend, which matches the Wong traction model. Their sensitivity coefficient and shear modulus are slightly fluctuated. Therefore, the average values can be used as the traction model parameters. The maximum traction of the grouser with a two-side edge and a 10 mm tooth width increment changing with the tooth height and ground pressure can be determined according to the grousers with different tooth widths. By combining the traction model parameters, the traction-displacement curve of the grouser with a certain group values of tooth width, tooth height, and ground pressure can be predicted. Therefore, the slip of the mining machine can be prevented to improve the mining efficiency.展开更多
Based on the elementary solutions and new integral equations,a new analytical-numerical method is proposed to calculate the interacting stresses of multiple circular holes in an infinite elastic plate under both remot...Based on the elementary solutions and new integral equations,a new analytical-numerical method is proposed to calculate the interacting stresses of multiple circular holes in an infinite elastic plate under both remote stresses and arbitrarily distributed stresses applied to the circular boundaries.The validity of this new analytical-numerical method is verified by the analytical solution of the bi-harmonic stress function method,the numerical solution of the finite element method,and the analytical-numerical solutions of the series expansion and Laurent series methods.Some numerical examples are presented to investigate the effects of the hole geometry parameters(radii and relative positions)and loading conditions(remote stresses and surface stresses)on the interacting tangential stresses and interacting stress concentration factors(SCFs).The results show that whether the interference effect is shielding(k<1)or amplifying(k>1)depends on the relative orientation of holes(α)and remote stresses(σ^∞x,σ^∞y).When the maximum principal stress is aligned with the connecting line of two-hole centers andσ^∞y<0.5σ^∞x,the plate containing two circular holes has greater stability than that containing one circular hole,and the smaller circular hole has greater stability than the bigger one.This new method not only has a simple formulation and high accuracy,but also has an advantage of wide applications over common analytical methods and analytical-numerical methods in calculating the interacting stresses of a multi-hole problem under both remote and arbitrary surface stresses.展开更多
Study on crack propagation process of brittle rock is of most significance for cracking-arrest design and cracking-network optimization in rock engineering.Phase-field model(PFM)has advantages of simplicity and high c...Study on crack propagation process of brittle rock is of most significance for cracking-arrest design and cracking-network optimization in rock engineering.Phase-field model(PFM)has advantages of simplicity and high convergence over the common numerical methods(e.g.finite element method,discrete element method,and particle manifold method)in dealing with three-dimensional and multicrack problems.However,current PFMs are mainly used to simulate mode-I(tensile)crack propagation but difficult to effectively simulate mode-II(shear)crack propagation.In this paper,a new mixed-mode PFM is established to simulate both mode-I and mode-II crack propagation of brittle rock by distinguishing the volumetric elastic strain energy and deviatoric elastic strain energy in the total elastic strain energy and considering the effect of compressive stress on mode-II crack propagation.Numerical solution method of the new mixed-mode PFM is proposed based on the staggered solution method with self-programmed subroutines UMAT and HETVAL of ABAQUS software.Three examples calculated using different PFMs as well as test results are presented for comparison.The results show that compared with the conventional PFM(which only simulates the tensile wing crack but not mode-II crack propagation)and the modified mixed-mode PFM(which has difficulty in simulating the shear anti-wing crack),the new mixed-mode PFM can successfully simulate the whole trajectories of mixed-mode crack propagation(including the tensile wing crack,shear secondary crack,and shear anti-wing crack)and mode-II crack propagation,which are close to the test results.It can be further extended to simulate multicrack propagation of anisotropic rock under multi-field coupling loads.展开更多
Calculating interacting stress intensity factors(SIFs)of multiple ellipticalholes and cracks is very important for safety assessment,stop-hole optimization design and resource exploitation production in underground ro...Calculating interacting stress intensity factors(SIFs)of multiple ellipticalholes and cracks is very important for safety assessment,stop-hole optimization design and resource exploitation production in underground rock engineering,e.g.,buried tunnels,deep mining,geothermal and shale oil/gas exploitation by hydraulic fracturing technology,where both geo-stresses and surface stresses are applied on buried tunnels,horizontal wells and natural cracks.However,current literatures are focused mainly on study of interacting SIFs of multiple elliptical-holes(or circularholes)and cracks only under far-field stresses without consideration of arbitrary surface stresses.Recently,our group has proposed a new integral method to calculate interacting SIFs of multiple circular-holes and cracks subjected to far-filed and surface stresses.This new method will be developed to study the problem of multiple elliptical-hole and cracks subjected to both far-field and surface stresses.In this study,based on Cauchy integral theorem,the exact fundamental stress solutions of single elliptical-hole under arbitrarily concentrated surface normal and shear forces are derived to establish new integral equation formulations for calculating interacting SIFs of multiple elliptical-holes and cracks under both far-field and arbitrary surface stresses.The new method is proved to be valid by comparing our results of interacting SIFs with those obtained by Green’s function method,displacement discontinuity method,singular integral equation method,pseudo-dislocations method and finite element method.Computational examples of one elliptical-hole and one crack in an infinite elastic body are given to analyze influence of loads and geometries on interacting SIFs.Research results show that whenσ_(xx)^(∞)≥σ^(yy′)^(∞),there appears a neutral crack orientation angle b0(without elliptical-hole’s effect).Increasing s¥xx/s¥yy and b/a(close to circularhole)usually decreases b0 of KI and benefits to the layout of stop-holes.The surface compressive stresses applied onto elliptical-hole(n)and crack(p)have significant influence on interacting SIFs but almost no on b0.Increasing n and p usually results in increase of interacting SIFs and facilitates crack propagation and fracture networks.The elliptical-hole orientation angle(a)and holed-cracked distance(t)have great influence on the interacting SIFs while have little effect on b0.The present method is not only simple(without any singular parts),high-accurate(due to exact fundamental stress solutions)and wider applicable(under far-field stresses and arbitrarily distributed surface stress)than the common methods,but also has the potential for the anisotropic problem involving multiple holes and cracks.展开更多
基金Project supported by the National Natural Science Foundation of China(No.51274251)
文摘The traction characteristics of the grouser, cutting the simulative soil of deepsea sediment, with different tooth widths, tooth heights, and ground pressures are studied with traction characteristic test apparatus. A traction-displacement model is obtained by combining the analysis of the cutting mechanism. The results show that the tractiondisplacement curves of grousers with different tooth widths, tooth heights, and ground pressures have the same changing trend, which matches the Wong traction model. Their sensitivity coefficient and shear modulus are slightly fluctuated. Therefore, the average values can be used as the traction model parameters. The maximum traction of the grouser with a two-side edge and a 10 mm tooth width increment changing with the tooth height and ground pressure can be determined according to the grousers with different tooth widths. By combining the traction model parameters, the traction-displacement curve of the grouser with a certain group values of tooth width, tooth height, and ground pressure can be predicted. Therefore, the slip of the mining machine can be prevented to improve the mining efficiency.
基金Project supported by the National Natural Science Foundation of China(Nos.51474251,51874351,and 11502226)the Natural Science Foundation of Hunan Province of China(No.2019JJ50625)and the Key Research and Development Plan of Hunan Province of China(No.2017WK2032)。
文摘Based on the elementary solutions and new integral equations,a new analytical-numerical method is proposed to calculate the interacting stresses of multiple circular holes in an infinite elastic plate under both remote stresses and arbitrarily distributed stresses applied to the circular boundaries.The validity of this new analytical-numerical method is verified by the analytical solution of the bi-harmonic stress function method,the numerical solution of the finite element method,and the analytical-numerical solutions of the series expansion and Laurent series methods.Some numerical examples are presented to investigate the effects of the hole geometry parameters(radii and relative positions)and loading conditions(remote stresses and surface stresses)on the interacting tangential stresses and interacting stress concentration factors(SCFs).The results show that whether the interference effect is shielding(k<1)or amplifying(k>1)depends on the relative orientation of holes(α)and remote stresses(σ^∞x,σ^∞y).When the maximum principal stress is aligned with the connecting line of two-hole centers andσ^∞y<0.5σ^∞x,the plate containing two circular holes has greater stability than that containing one circular hole,and the smaller circular hole has greater stability than the bigger one.This new method not only has a simple formulation and high accuracy,but also has an advantage of wide applications over common analytical methods and analytical-numerical methods in calculating the interacting stresses of a multi-hole problem under both remote and arbitrary surface stresses.
基金supports by National Natural Science Foundation of China(Grant Nos.51874351 and 52078495)Excellent Postdoctoral Innovative Talents Project of Hunan Province,China(Grant No.2020RC2001).
文摘Study on crack propagation process of brittle rock is of most significance for cracking-arrest design and cracking-network optimization in rock engineering.Phase-field model(PFM)has advantages of simplicity and high convergence over the common numerical methods(e.g.finite element method,discrete element method,and particle manifold method)in dealing with three-dimensional and multicrack problems.However,current PFMs are mainly used to simulate mode-I(tensile)crack propagation but difficult to effectively simulate mode-II(shear)crack propagation.In this paper,a new mixed-mode PFM is established to simulate both mode-I and mode-II crack propagation of brittle rock by distinguishing the volumetric elastic strain energy and deviatoric elastic strain energy in the total elastic strain energy and considering the effect of compressive stress on mode-II crack propagation.Numerical solution method of the new mixed-mode PFM is proposed based on the staggered solution method with self-programmed subroutines UMAT and HETVAL of ABAQUS software.Three examples calculated using different PFMs as well as test results are presented for comparison.The results show that compared with the conventional PFM(which only simulates the tensile wing crack but not mode-II crack propagation)and the modified mixed-mode PFM(which has difficulty in simulating the shear anti-wing crack),the new mixed-mode PFM can successfully simulate the whole trajectories of mixed-mode crack propagation(including the tensile wing crack,shear secondary crack,and shear anti-wing crack)and mode-II crack propagation,which are close to the test results.It can be further extended to simulate multicrack propagation of anisotropic rock under multi-field coupling loads.
基金supports by National Natural Science Foundation of China(Nos.51874351,51474251 and 12072309)Excellent Postdoctoral Innovative Talents Project of Hunan Province(No.2020RC2001).
文摘Calculating interacting stress intensity factors(SIFs)of multiple ellipticalholes and cracks is very important for safety assessment,stop-hole optimization design and resource exploitation production in underground rock engineering,e.g.,buried tunnels,deep mining,geothermal and shale oil/gas exploitation by hydraulic fracturing technology,where both geo-stresses and surface stresses are applied on buried tunnels,horizontal wells and natural cracks.However,current literatures are focused mainly on study of interacting SIFs of multiple elliptical-holes(or circularholes)and cracks only under far-field stresses without consideration of arbitrary surface stresses.Recently,our group has proposed a new integral method to calculate interacting SIFs of multiple circular-holes and cracks subjected to far-filed and surface stresses.This new method will be developed to study the problem of multiple elliptical-hole and cracks subjected to both far-field and surface stresses.In this study,based on Cauchy integral theorem,the exact fundamental stress solutions of single elliptical-hole under arbitrarily concentrated surface normal and shear forces are derived to establish new integral equation formulations for calculating interacting SIFs of multiple elliptical-holes and cracks under both far-field and arbitrary surface stresses.The new method is proved to be valid by comparing our results of interacting SIFs with those obtained by Green’s function method,displacement discontinuity method,singular integral equation method,pseudo-dislocations method and finite element method.Computational examples of one elliptical-hole and one crack in an infinite elastic body are given to analyze influence of loads and geometries on interacting SIFs.Research results show that whenσ_(xx)^(∞)≥σ^(yy′)^(∞),there appears a neutral crack orientation angle b0(without elliptical-hole’s effect).Increasing s¥xx/s¥yy and b/a(close to circularhole)usually decreases b0 of KI and benefits to the layout of stop-holes.The surface compressive stresses applied onto elliptical-hole(n)and crack(p)have significant influence on interacting SIFs but almost no on b0.Increasing n and p usually results in increase of interacting SIFs and facilitates crack propagation and fracture networks.The elliptical-hole orientation angle(a)and holed-cracked distance(t)have great influence on the interacting SIFs while have little effect on b0.The present method is not only simple(without any singular parts),high-accurate(due to exact fundamental stress solutions)and wider applicable(under far-field stresses and arbitrarily distributed surface stress)than the common methods,but also has the potential for the anisotropic problem involving multiple holes and cracks.