Photocatalytic oxygen(O_(2))reduction has been considered a promising method for hydrogen peroxide(H_(2)O_(2))production.However,the poor visible light harvesting and low-efficient separation and generation of charge ...Photocatalytic oxygen(O_(2))reduction has been considered a promising method for hydrogen peroxide(H_(2)O_(2))production.However,the poor visible light harvesting and low-efficient separation and generation of charge carriers of conventional photocatalysts strongly limited their photocatalytic H_(2)O_(2) generation performance.Herein,we design a highly efficient photocatalyst in this work by marrying luminescent gold-silver nanoclusters(AuAg NCs)to polyethyleneimine(PEI)modified C_(3)N_(4)(C3N4-PEI).The key design in this work is the utilization of highly luminescent AuAg NCs as photosensitizers to promote the generation and separation of charge carriers of C_(3)N_(4)-PEI,thereby ultimately producing abundant e−for O_(2) reduction under visible light illumination(λ≥400 nm).As a result,the as-designed photocatalyst(C3N4-PEI-AuAg NCs)exhibits excellent photocatalytic activity with an H_(2)O_(2) production capability of 82μM in pure water,which is 3.5 times higher than pristine C_(3)N_(4)(23μM).This interesting design provides a paradigm in developing other high-efficient photocatalysts for visible-light-driven H_(2)O_(2) production.展开更多
This study explored the potential of polysaccharides from Actium lappa(ALPs)as natural wall materials for producing ALP-based nanoparticles to deliver poorly water-soluble oleanolic acid(OA)and ursolic acid(UA).Encaps...This study explored the potential of polysaccharides from Actium lappa(ALPs)as natural wall materials for producing ALP-based nanoparticles to deliver poorly water-soluble oleanolic acid(OA)and ursolic acid(UA).Encapsulating OA+UA with ALPs(ALP:OA+UA,50:1;OA:UA,1:1)changed the crystalline nature to a more amorphous state through hydrogen bonding and involving O-H/C-O/O-C-O groups.ALP-OA/UA nanoparticles had a particle size and zeta potential(in water)of 199.1 nm/-7.15 mV,with a narrow unimodal size distribution,and excellent pH,salt solution,temperature and storage stability.Compared with ALPs,ALPOA/UA nanoparticles showed enhanced anti-inflammatory activity(especially at a dose of 100μg/mL)in a CuSO-induced zebrafish inflammation model via down-regulating the NF-κB signalling pathway and gene expression of associated transcription factors and cytokines(TNF-α,IL-1βand IL-8).Therefore,ALP-based nanoparticles are natural and anti-inflammatory carriers for hydrophobic bioactive molecules.展开更多
A fundamental aspect of cancer development is cancer cell proliferation.Seeking for chemical agents that can interfere with cancer cell growth has been of great interest over the years.In our study,we found that a ben...A fundamental aspect of cancer development is cancer cell proliferation.Seeking for chemical agents that can interfere with cancer cell growth has been of great interest over the years.In our study,we found that a benzoxazine derivative,(6-tert-butyl-3,4-dihydro-2Hbenzo[b][1,4]oxazin-3-yl)methanol(TBM),could inhibit cell growth and caused significant cell cycle arrest in pulmonary adenocarcinoma A549 and H460 cells with wild-type p53,while not affecting the cell cycle distribution in p53-deleted H1299 lung adenocarcinoma cells.Since P53 plays an important role in regulating cell cycle progression,we analyzed the protein level of p53 by Western blot,and detected a significant elevation of p53 level after TBM treatment in A549 and H460 cells.The data suggested that TBM might specifically inhibit the proliferation of p53 wild-type lung adenocarcinoma cells through a p53-dependent cell cycle control pathway.More interestingly,results indicated that TBM might serve as a useful tool for studying the molecular mechanisms of lung cancer cell growth and cell cycle control,especially for the biologic process regulated by P53.展开更多
基金National Natural Science Foundation of China(21908121,22071127)Taishan Scholar Foundation(tsqn201812074,China)Scientific Research Foundation of Qingdao University of Science and Technology(210/010029031,and 210/010029008).
文摘Photocatalytic oxygen(O_(2))reduction has been considered a promising method for hydrogen peroxide(H_(2)O_(2))production.However,the poor visible light harvesting and low-efficient separation and generation of charge carriers of conventional photocatalysts strongly limited their photocatalytic H_(2)O_(2) generation performance.Herein,we design a highly efficient photocatalyst in this work by marrying luminescent gold-silver nanoclusters(AuAg NCs)to polyethyleneimine(PEI)modified C_(3)N_(4)(C3N4-PEI).The key design in this work is the utilization of highly luminescent AuAg NCs as photosensitizers to promote the generation and separation of charge carriers of C_(3)N_(4)-PEI,thereby ultimately producing abundant e−for O_(2) reduction under visible light illumination(λ≥400 nm).As a result,the as-designed photocatalyst(C3N4-PEI-AuAg NCs)exhibits excellent photocatalytic activity with an H_(2)O_(2) production capability of 82μM in pure water,which is 3.5 times higher than pristine C_(3)N_(4)(23μM).This interesting design provides a paradigm in developing other high-efficient photocatalysts for visible-light-driven H_(2)O_(2) production.
基金supported by the Shandong Provincial Natural Science Foundation of China(ZR2019BC100)Science,Education and Industry Integration Innovation Pilot Project of Qilu University of Technology(Shandong Academy of Sciences)(2020KJC-ZD10)Incubation Program of Youth Innovation in Shandong Province。
文摘This study explored the potential of polysaccharides from Actium lappa(ALPs)as natural wall materials for producing ALP-based nanoparticles to deliver poorly water-soluble oleanolic acid(OA)and ursolic acid(UA).Encapsulating OA+UA with ALPs(ALP:OA+UA,50:1;OA:UA,1:1)changed the crystalline nature to a more amorphous state through hydrogen bonding and involving O-H/C-O/O-C-O groups.ALP-OA/UA nanoparticles had a particle size and zeta potential(in water)of 199.1 nm/-7.15 mV,with a narrow unimodal size distribution,and excellent pH,salt solution,temperature and storage stability.Compared with ALPs,ALPOA/UA nanoparticles showed enhanced anti-inflammatory activity(especially at a dose of 100μg/mL)in a CuSO-induced zebrafish inflammation model via down-regulating the NF-κB signalling pathway and gene expression of associated transcription factors and cytokines(TNF-α,IL-1βand IL-8).Therefore,ALP-based nanoparticles are natural and anti-inflammatory carriers for hydrophobic bioactive molecules.
基金This study was supported by the National Natural Science Foundation of China(Grant No.90813022)by the Natural Science Foundation of Shandong Province(Nos.Z2008D04 and Z2008B10).
文摘A fundamental aspect of cancer development is cancer cell proliferation.Seeking for chemical agents that can interfere with cancer cell growth has been of great interest over the years.In our study,we found that a benzoxazine derivative,(6-tert-butyl-3,4-dihydro-2Hbenzo[b][1,4]oxazin-3-yl)methanol(TBM),could inhibit cell growth and caused significant cell cycle arrest in pulmonary adenocarcinoma A549 and H460 cells with wild-type p53,while not affecting the cell cycle distribution in p53-deleted H1299 lung adenocarcinoma cells.Since P53 plays an important role in regulating cell cycle progression,we analyzed the protein level of p53 by Western blot,and detected a significant elevation of p53 level after TBM treatment in A549 and H460 cells.The data suggested that TBM might specifically inhibit the proliferation of p53 wild-type lung adenocarcinoma cells through a p53-dependent cell cycle control pathway.More interestingly,results indicated that TBM might serve as a useful tool for studying the molecular mechanisms of lung cancer cell growth and cell cycle control,especially for the biologic process regulated by P53.