As a social psychological field derived from the concept of physical field,the moral education field plays a very important role in guiding the construction of a home-school co-education model.In this paper,by analyzi...As a social psychological field derived from the concept of physical field,the moral education field plays a very important role in guiding the construction of a home-school co-education model.In this paper,by analyzing the internal power system of the moral education field,with a policy oriented approach and combined with contemporary factors,it aims to empower the traditional home-school co-education model.Only by combining home education and school education,supplemented by social policy guidance,strengthening the construction of the"trinity"community,creating a harmonious and stable ecological interactive moral education field,expanding the path of home-school cooperation,strengthening the boundary of home and school responsibility,and innovating the form of home-school co-education,can it support the bright future of education.展开更多
<strong>Objective</strong>: Exploring the expression characteristics of CRP/ALB (CAR) in DLBCL patients and its value in prognostic judgment. <strong>Methods:</strong> We collected the basic in...<strong>Objective</strong>: Exploring the expression characteristics of CRP/ALB (CAR) in DLBCL patients and its value in prognostic judgment. <strong>Methods:</strong> We collected the basic information, clinical characteristics, laboratory examinations and follow-up prognosis of 142 newly diagnosed DLBCL patients with relatively complete data in our hospital and performed statistical analysis. We used X-tile analysis software to obtain the best cut-off value of CAR (0.33), compared the clinical characteristics and survival of patients in the high CAR group and the low CAR group, and compared the survival status with the IPI scoring system. <strong>Results:</strong> 1) There were significant differences in staging, grouping, IPI scores, extranodal involvement, LDH levels, <em>β</em>2-microglobulin, CA125, and Hb levels between the high CAR group and the low CAR group (all <em>P</em> < 0.05). 2) According to the survival curve, the OS of the high CAR group was significantly shorter than that of the low CAR group (<em>P</em> < 0.01), and the one-year, three-year and five-year survival conditions of high CAR group were all shorter than those of low CAR group. 3) COX analysis showed that high CAR is an independent poor prognostic factor for DLBCL patients. 4) A comparative analysis of OS, three-year and five-year survival showed that the combination of CAR and IPI was significantly better than the IPI system, and there was no significant difference in the evaluation value of the prognosis between CAR alone and IPI alone. <strong>Conclusion:</strong> High CAR value, like the IPI scoring system, is an independent poor prognostic factor of DLBCL, can be used as a reliable indicator of prognosis. And CAR can also be combined with IPI to evaluate the prognosis of DLBCL, of which the effect is better than that of IPI alone.展开更多
The combination of spark discharge and laser-induced breakdown spectroscopy (LIBS) is called spark discharge assisted LIBS.It works under laser-plasma triggered spark discharge mode,and shows its ability to enhance sp...The combination of spark discharge and laser-induced breakdown spectroscopy (LIBS) is called spark discharge assisted LIBS.It works under laser-plasma triggered spark discharge mode,and shows its ability to enhance spectral emission intensity.This work uses a femtosecond laser as the light souuce,since femtosecond laser has many advantages in laser-induced plasma compared with nanosecond laser,meanwhile,the study on femtosecond LIBS with spark discharge is rare.Time-resolved spectroscopy of spark discharge assisted femtosecond LIBS was investigated under different discharge voltages and laser energies.The results showed that the spectral intensity was significantly enhanced by using spark discharge compared with LIBS alone.And,the spectral emission intensity using spark discharge assisted LIBS increased with the increase in the laser energy.In addition,at low laser energy,there was an obvious delay on the discharge time compared with high laser energy,and the discharge time with positive voltage was different from that with negative voltage.展开更多
Tin-based materials are very attractive anodes because of their high theoretical capacity,but their rapid capacity fading from volume expansions limits their practical applications during alloying and dealloying proce...Tin-based materials are very attractive anodes because of their high theoretical capacity,but their rapid capacity fading from volume expansions limits their practical applications during alloying and dealloying processes.Herein,the improved binder-free tin-copper intermetallic/carbon nanotubes(Cu6Sn5/CNTs)alloy thin-film electrodes are directly fabricated through efficient in situ electrodeposition from the leaching solution of treated waste-printed circuit boards(WPCBs).The characterization results show that the easily agglomerated Cu6Sn5 alloy nanoparticles are uniformly dispersed across the three-dimensional network when the CNTs concentration in the electrodeposition solution is maintained at 0.2 g·L−1.Moreover,the optimal Cu6Sn5/CNTs-0.2 alloy thin-film electrode can not only provide a decent discharge specific capacity of 458.35 mAh·g^(−1)after 50 cycles at 100 mA·g^(−1)within capacity retention of 82.58%but also deliver a relatively high reversible specific capacity of 518.24,445.52,418.18,345.33,and 278.05 mAh·g^(−1)at step-increased current density of 0.1,0.2,0.5,1.0,and 2.0 A·g^(−1),respectively.Therefore,the preparation process of the Cu6Sn5/CNTs-0.2 alloy thin-film electrode with improved electrochemical performance may provide a cost-effective strategy for the resource utilization of WPCBs to fabricate anode materials for lithium-ion batteries.展开更多
We investigated the dependence of laser-induced breakdown spectral intensity on the focusing position of a lens at different sample temperatures(room temperature to 300 ℃) in atmosphere.A Q-switched Nd:YAG nanosecond...We investigated the dependence of laser-induced breakdown spectral intensity on the focusing position of a lens at different sample temperatures(room temperature to 300 ℃) in atmosphere.A Q-switched Nd:YAG nanosecond pulsed laser with 1064 nm wavelength and 10 ns pulse width was used to ablate silicon to produce plasma. It was confirmed that the increase in the sample's initial temperature could improve spectral line intensity. In addition, when the distance from the target surface to the focal point increased, the intensity firstly rose, and then dropped.The trend of change with distance was more obvious at higher sample temperatures. By observing the distribution of the normalized ratio of Si atomic spectral line intensity and Si ionic spectral line intensity as functions of distance and temperature, the maximum value of normalized ratio appeared at the longer distance as the initial temperature was higher, while the maximum ratio appeared at the shorter distance as the sample temperature was lower.展开更多
Laser-induced breakdown spectroscopy(LIBS) is a good technique for detecting and analyzing material elements due to the plasma emission produced by the high-power laser pulse. Currently, a significant topic of LIBS re...Laser-induced breakdown spectroscopy(LIBS) is a good technique for detecting and analyzing material elements due to the plasma emission produced by the high-power laser pulse. Currently, a significant topic of LIBS research is improving the emission intensity of LIBS. This study investigated the effect of laser-polarization on femtosecond laser-ablated Cu plasma spectra at different sample temperatures. The measured lines under circularly polarized lasers were higher than those under linearly and elliptically polarized lasers. The enhancement effect was evident at higher Cu temperatures when comparing the plasma spectra that have circular and linear polarizations for different target temperatures. To understand the influence of laser-polarization and sample temperature on signal intensity, we calculated the plasma temperature(PT)and electron density(ED). The change in PT and ED was consistent with the change in the atomic lines as the laser polarization was being adjusted. When raising the Cu temperature, the PT increased while the ED decreased. Raising the Cu temperature whilst adjusting the laser-polarization is effective for improving the signal of femtosecond LIBS compared to raising the initial sample temperature alone or only changing the laser polarization.展开更多
In this paper,we investigate the time-resolved spectroscopy of collinear femtosecond(fs)and nanosecond(ns)dual-pulse(DP)laser-induced plasmas.A copper target was used as an experimental sample,and the fs laser was con...In this paper,we investigate the time-resolved spectroscopy of collinear femtosecond(fs)and nanosecond(ns)dual-pulse(DP)laser-induced plasmas.A copper target was used as an experimental sample,and the fs laser was considered as the time zero reference point.The interpulse delay between fs and ns laser beams was 3μs.First,we compared the time-resolved peak intensities of Cu(I)lines from Cu plasmas induced by fs+ns and ns+fs DP lasers with collinear configuration.The results showed that compared with the ns+fs DP,the fs+ns DP laser-induced Cu plasmas had stronger peak intensities and longer lifetimes.Second,we calculated time-resolved plasma temperatures using the Boltzmann plot with three spectral lines at Cu(I)510.55,515.32 and 521.82 nm.In addition,time-resolved electron densities were calculated based on Stark broadening with Cu(I)line at 521.82 nm.It was found that compared with ns+fs DP,the plasma temperatures and electron densities of the Cu plasmas induced by fs+ns DP laser were higher.Finally,we observed images of ablation craters under the two experimental conditions and found that the fs+ns DP laser-produced stronger ablation,which corresponded to stronger plasma emission.展开更多
Spectral intensity,electron temperature and density of laser-induced plasma(LIP) are important parameters for affecting sensitivity of laser-induced breakdown spectroscopy(LIBS).Increasing target temperature is an eas...Spectral intensity,electron temperature and density of laser-induced plasma(LIP) are important parameters for affecting sensitivity of laser-induced breakdown spectroscopy(LIBS).Increasing target temperature is an easy and feasible method to improve the sensitivity.In this paper,a brass target in a temperature range from 25℃ to 200℃ was ablated to generate the LIP using femtosecond pulse.Time-resolved spectral emission of the femtosecond LIBS was measured under different target temperatures.The results showed that,compared with the experimental condition of 25℃,the spectral intensity of the femtosecond LIP was enhanced with more temperature target.In addition,the electron temperature and density were calculated by Boltzmann equation and Stark broadening,indicating that the changes in the electron temperature and density of femtosecond LIP with the increase of the target temperature were different from each other.By increasing the target temperature,the electron temperature increased while the electron density decreased.Therefore,in femtosecond LIBS,a hightemperature and low-density plasma with high emission can be generated by increasing the target temperature.The increase in the target temperature can improve the resolution and sensitivity of femtosecond LIBS.展开更多
Plants use a sophisticated immune system to perceive pathogen infection and activate immune responses in a tightly controlled manner.In barley,Hv WRKY2 acts as a repressor in barley disease resistance to the powdery m...Plants use a sophisticated immune system to perceive pathogen infection and activate immune responses in a tightly controlled manner.In barley,Hv WRKY2 acts as a repressor in barley disease resistance to the powdery mildew fungus,Blumeria graminis f.sp.hordei(Bgh).However,the molecular features of Hv WRKY2 in its DNA-binding and repressor functions,as well as its target genes,are uncharacterized.We show that the W-box binding of Hv WRKY2 requires an intact WRKY domain and an upstream sequence of~75 amino acids,and the Hv WRKY2 W-box binding activity is linked to its repressor function in disease resistance.Chromatin immunoprecipitation(ChIP)-seq analysis identified HvCEBiP,a putative chitin receptor gene,as a target gene of Hv WRKY2 in overexpressing transgenic barley plants.ChIP-qPCR and Electrophoretic Mobility Shift Assay(EMSA)verified the direct binding of Hv WRKY2 to a W-boxcontaining sequence in the HvCEBiP promoter.Hv CEBiP positively regulates resistance against Bgh in barley.Our findings suggest that Hv WRKY2 represses barley basal immunity by directly targeting pathogen-associated molecular pattern(PAMP)recognition receptor genes,suggesting that Hv CEBiP and likely chitin signaling function in barley PAMP-triggered immune responses to Bgh infection.展开更多
This study presents a thorough investigation of the relationship between the coronavirus disease 2019(COVID-19)and daily stock price changes.We use several types of COVID-19 patients as indicators for exploring whethe...This study presents a thorough investigation of the relationship between the coronavirus disease 2019(COVID-19)and daily stock price changes.We use several types of COVID-19 patients as indicators for exploring whether stock prices are significantly affected by COVID-19’s impact.In addition,using the Chinese stock market as an example,we are particularly interested in the psychological and industrial impacts of COVID-19 on the financial market.This study makes two contributions to the literature.First,from a theoretical perspective,it shows a novel quantitative relationship between the psychological response to the pandemic and stock prices.In addition,it depicts the mechanism of the shock to the stock market by pointing out the specific functional expression of the impulse reaction.To our knowledge,this is the first theoretical calculation of the impulse of a shock to the financial market.Second,this study empirically estimates the marginal effect of the COVID-19 pandemic on fluctuations in stock market returns.By controlling for stock fundamentals,this study also estimates diverse industrial responses to pandemic stock volatility.We confirm that the COVID-19 pandemic has caused panic in the stock market,which not only depresses stock prices but also inflates volatility in daily returns.Regarding the impulse of the shock,we identify the cumulative level of the pandemic variables as well as their incremental differences.As shown by our empirical results,the terms for these differences will eventually dominate the marginal effect,which confirms the fading impulse of the shock.Finally,this study highlights some important policy implications of stock market volatility and returns to work in the industry.展开更多
In double-pulse laser-induced breakdown spectroscopy(DP-LIBS), the collinear femtosecond double-pulse laser configuration is experimentally investigated with different initial sample temperatures using a Ti:sapphire l...In double-pulse laser-induced breakdown spectroscopy(DP-LIBS), the collinear femtosecond double-pulse laser configuration is experimentally investigated with different initial sample temperatures using a Ti:sapphire laser. The glass sample is ablated to produce the plasma spectroscopy. During the experiment, the detected spectral lines include two Na(I) lines(589.0 nm and 589.6 nm) and one Ca(I) line at the wavelength of 585.7 nm. The emission lines are measured at room temperature(22 ℃) and three higher initial sample temperatures(T_s?=?100 ℃, 200 ℃, and 250 ℃). The inter-pulse delay time ranges from-250 ps to 250 ps.The inter-pulse delay time and the sample temperature strongly influence the spectral intensity,and the spectral intensity can be significantly enhanced by increasing the sample temperature and selecting the optimized inter-pulse time. For the same inter-pulse time of 0 ps(single-pulse LIBS), the enhancement ratio is approximately 2.5 at T_s?=?200 ℃ compared with that obtained at T_s?=?22 ℃. For the same inter-pulse time of 150 ps, the enhancement ratio can be up to 4 at T_s?=?200 ℃ compared with that obtained at T_s?=?22 ℃. The combined enhancement effects of the different initial sample temperatures and the double-pulse configuration in femtosecond LIBS are much stronger than that of the different initial sample temperatures or the double-pulse configuration only.展开更多
In this study, a femtosecond laser was focused to ablate brass target and generate plasma emission in air. The influence of lens to sample distance(LTSD) on spectral emission of brass plasma under linearly and circula...In this study, a femtosecond laser was focused to ablate brass target and generate plasma emission in air. The influence of lens to sample distance(LTSD) on spectral emission of brass plasma under linearly and circularly polarized pulses with different pulse energies was investigated. The results indicated that the position with the strongest spectral emission moved toward focusing lens with increasing the energy. At the same laser energy, the line emission under circularly polarized pulse was stronger compared with linearly polarized pulse for different LTSDs. Next, electron temperature and density of the plasma were obtained with Cu(Ⅰ) lines,indicating that the electron temperature and density under circularly polarized pulse were higher compared to that under linearly polarized pulse. Therefore, changing the laser polarization is a simple and effective way to improve the spectral emission intensity of femtosecond laserinduced plasma.展开更多
The influence of the target temperature on the molecular emission of femtosecond laser-induced breakdown spectroscopy(LIBS) was investigated experimentally. An Al target was ablated to produce laser-induced plasma. Th...The influence of the target temperature on the molecular emission of femtosecond laser-induced breakdown spectroscopy(LIBS) was investigated experimentally. An Al target was ablated to produce laser-induced plasma. The Al target was uniformly heated to a maximum of 250℃. The measured molecular emission was AlO(△ν=0) from the femtosecond LIBS of the Al target.The measurements indicated that the molecular emission of AlO increased as the temperature of the Al target increased. In addition, a two-temperature model was used to simulate the evolution of the electron and lattice temperature of the Al target with different initial temperatures. The simulated results showed that the electron and lattice temperatures of Al irradiated by the femtosecond laser increased as the initial temperature of the Al target increased;also, the simulated ablated depth increased. Therefore, an increase in the initial Al target temperature resulted in an enhancement in the spectral signal of AlO from the femtosecond LIBS of Al,which was directly related to the increase in the size of the ablated crater. The study suggested that increasing the temperature of the target improves the intensity of molecular emission in femtosecond LIBS.展开更多
In this paper,we investigated the emission spectra of plasmas produced from femtosecond and nanosecond laser ablations at different target temperatures in air.A brass was selected as ablated target of the experiment.T...In this paper,we investigated the emission spectra of plasmas produced from femtosecond and nanosecond laser ablations at different target temperatures in air.A brass was selected as ablated target of the experiment.The results indicated that spectral emission intensity and plasma temperature showed similar trend for femtosecond and nanosecond lasers,and the two parameters were improved by increasing the sample temperature in both cases.Moreover,the temperature of nanosecond laser-excited plasma was higher compared with that of femtosecond laser-excited plasma,and the increase of the plasma temperature in the case of nanosecond laser was more evident.In addition,there was a significant difference in electron density between femtosecond and nanosecond laser-induced plasmas.The electron density for femtosecond laser decreased with increasing the target temperature,while for nanosecond laser,the electron density was almost unchanged at different sample temperatures.展开更多
Adequate drug delivery across the blood–brain barrier(BBB) is a critical factor in treating central nervous system(CNS) disorders. Inspired by swimming fish and the microstructure of the nasal cavity, this study is t...Adequate drug delivery across the blood–brain barrier(BBB) is a critical factor in treating central nervous system(CNS) disorders. Inspired by swimming fish and the microstructure of the nasal cavity, this study is the first to develop swimming short fibrous nasal drops that can directly target the nasal mucosa and swim in the nasal cavity, which can effectively deliver drugs to the brain. Briefly, swimming short fibrous nasal drops with charged controlled drug release were fabricated by electrospinning, homogenization,the π-π conjugation between indole group of fibers, the benzene ring of leucine-rich repeat kinase 2(LRRK2) inhibitor along with charge-dipole interaction between positively charged poly-lysine(PLL)and negatively charged surface of fibers;this enabled these fibers to stick to nasal mucosa, prolonged the residence time on mucosa, and prevented rapid mucociliary clearance. In vitro, swimming short fibrous nasal drops were biocompatible and inhibited microglial activation by releasing an LRRK2 inhibitor. In vivo, luciferase-labelled swimming short fibrous nasal drops delivered an LRRK2 inhibitor to the brain through the nasal mucosa, alleviating cognitive dysfunction caused by sepsis-associated encephalopathy by inhibiting microglial inflammation and improving synaptic plasticity. Thus, swimming short fibrous nasal drops is a promising strategy for the treatment of CNS diseases.展开更多
This study investigates the relationship between hyperuricemia and metabolic syndrome(MS)among males of Han ethnicity in the Xinjiang Uygur Autonomous Region,China.The blood samples were collected from January to May,...This study investigates the relationship between hyperuricemia and metabolic syndrome(MS)among males of Han ethnicity in the Xinjiang Uygur Autonomous Region,China.The blood samples were collected from January to May,2006 in Urumqi.It included 1496 subjects with ages between 20 to 70 years.All these subjects had physical examinations,blood pressure(BP)measurement and analysis for serum uric acid(SUA),fasting blood sugar(FBS),serum triglycer-ide(TG),serum total cholesterol(TC),serum high den-sity lipoprotein(HDL-C)and serum low density lipoprotein(LDL-C)as well as biochemistry assay.The Data were analyzed using the Pearson Chi-Square Test,Independent-Samples T-Test and the Mantel-Haenszel Test for linear trend,respectively.The results show that the prevalence of MS in the present study was 18%.Blood pressure,fasting blood sugar,body mass index(BMI),waist/hip ratio(WHR),TG,TC and LDL-C were significantly higher in the hyperuricemic group than in normal group and these parameters were strongly related to serum uric acid levels.The com-ponents of metabolic syndrome such as obesity,hyper-glycemia,hypertension and dyslipidemia had a close correlation with SUA.The Odds ratios of these meta-bolic diseases in the hyperuricemic group were 3.097 times,2.633 times,2.226 times and 3.058 times of the normal SUA group,respectively.They all have a positive correlation with hyperuricemia.Hyperurice-mia is closely linked to the various components of the metabolic syndrome.More emphasis should be put on the evolving control and prevalence of hyperuricemia and metabolic syndrome among males of Han ethnicity in Xinjiang.展开更多
基金Supported by Research and Practice Project on Promoting High-quality Development of Basic Education through the New Normal Construction in Guangdong ProvinceKey Research Platform and Project for Ordinary Universities in Guangdong Provincial Department of Education in 2022(Key Projects for Technology Services in Rural Areas)(2022ZDZX4058)Student Innovation and Entrepreneurship Training Program Project in Zhaoqing University(S202210580034).
文摘As a social psychological field derived from the concept of physical field,the moral education field plays a very important role in guiding the construction of a home-school co-education model.In this paper,by analyzing the internal power system of the moral education field,with a policy oriented approach and combined with contemporary factors,it aims to empower the traditional home-school co-education model.Only by combining home education and school education,supplemented by social policy guidance,strengthening the construction of the"trinity"community,creating a harmonious and stable ecological interactive moral education field,expanding the path of home-school cooperation,strengthening the boundary of home and school responsibility,and innovating the form of home-school co-education,can it support the bright future of education.
文摘<strong>Objective</strong>: Exploring the expression characteristics of CRP/ALB (CAR) in DLBCL patients and its value in prognostic judgment. <strong>Methods:</strong> We collected the basic information, clinical characteristics, laboratory examinations and follow-up prognosis of 142 newly diagnosed DLBCL patients with relatively complete data in our hospital and performed statistical analysis. We used X-tile analysis software to obtain the best cut-off value of CAR (0.33), compared the clinical characteristics and survival of patients in the high CAR group and the low CAR group, and compared the survival status with the IPI scoring system. <strong>Results:</strong> 1) There were significant differences in staging, grouping, IPI scores, extranodal involvement, LDH levels, <em>β</em>2-microglobulin, CA125, and Hb levels between the high CAR group and the low CAR group (all <em>P</em> < 0.05). 2) According to the survival curve, the OS of the high CAR group was significantly shorter than that of the low CAR group (<em>P</em> < 0.01), and the one-year, three-year and five-year survival conditions of high CAR group were all shorter than those of low CAR group. 3) COX analysis showed that high CAR is an independent poor prognostic factor for DLBCL patients. 4) A comparative analysis of OS, three-year and five-year survival showed that the combination of CAR and IPI was significantly better than the IPI system, and there was no significant difference in the evaluation value of the prognosis between CAR alone and IPI alone. <strong>Conclusion:</strong> High CAR value, like the IPI scoring system, is an independent poor prognostic factor of DLBCL, can be used as a reliable indicator of prognosis. And CAR can also be combined with IPI to evaluate the prognosis of DLBCL, of which the effect is better than that of IPI alone.
基金National Natural Science Foundation of China (Nos. 11674128, and 11674124)Jilin Province Scientific and Technological Development Program, China (No. 20170101063JC).
文摘The combination of spark discharge and laser-induced breakdown spectroscopy (LIBS) is called spark discharge assisted LIBS.It works under laser-plasma triggered spark discharge mode,and shows its ability to enhance spectral emission intensity.This work uses a femtosecond laser as the light souuce,since femtosecond laser has many advantages in laser-induced plasma compared with nanosecond laser,meanwhile,the study on femtosecond LIBS with spark discharge is rare.Time-resolved spectroscopy of spark discharge assisted femtosecond LIBS was investigated under different discharge voltages and laser energies.The results showed that the spectral intensity was significantly enhanced by using spark discharge compared with LIBS alone.And,the spectral emission intensity using spark discharge assisted LIBS increased with the increase in the laser energy.In addition,at low laser energy,there was an obvious delay on the discharge time compared with high laser energy,and the discharge time with positive voltage was different from that with negative voltage.
基金supported by the National Natural Science Foundation of China(Nos.52274292 and 51874046)the Outstanding Youth Foundation of Hubei Province,China(No.2020CFA090)the Young Topnotch Talent Cultivation Program of Hubei Province,China.
文摘Tin-based materials are very attractive anodes because of their high theoretical capacity,but their rapid capacity fading from volume expansions limits their practical applications during alloying and dealloying processes.Herein,the improved binder-free tin-copper intermetallic/carbon nanotubes(Cu6Sn5/CNTs)alloy thin-film electrodes are directly fabricated through efficient in situ electrodeposition from the leaching solution of treated waste-printed circuit boards(WPCBs).The characterization results show that the easily agglomerated Cu6Sn5 alloy nanoparticles are uniformly dispersed across the three-dimensional network when the CNTs concentration in the electrodeposition solution is maintained at 0.2 g·L−1.Moreover,the optimal Cu6Sn5/CNTs-0.2 alloy thin-film electrode can not only provide a decent discharge specific capacity of 458.35 mAh·g^(−1)after 50 cycles at 100 mA·g^(−1)within capacity retention of 82.58%but also deliver a relatively high reversible specific capacity of 518.24,445.52,418.18,345.33,and 278.05 mAh·g^(−1)at step-increased current density of 0.1,0.2,0.5,1.0,and 2.0 A·g^(−1),respectively.Therefore,the preparation process of the Cu6Sn5/CNTs-0.2 alloy thin-film electrode with improved electrochemical performance may provide a cost-effective strategy for the resource utilization of WPCBs to fabricate anode materials for lithium-ion batteries.
基金support by National Natural Science Foundation of China (Grant Nos. 11674128, 11504129, and 11474129)Jilin Province Scientific and Technological Development Program, China (Grant No. 20170101063JC)the Thirteenth Five-Year Scientific and Technological Research Project of the Education Department of Jilin Province, China (2016, No. 400)
文摘We investigated the dependence of laser-induced breakdown spectral intensity on the focusing position of a lens at different sample temperatures(room temperature to 300 ℃) in atmosphere.A Q-switched Nd:YAG nanosecond pulsed laser with 1064 nm wavelength and 10 ns pulse width was used to ablate silicon to produce plasma. It was confirmed that the increase in the sample's initial temperature could improve spectral line intensity. In addition, when the distance from the target surface to the focal point increased, the intensity firstly rose, and then dropped.The trend of change with distance was more obvious at higher sample temperatures. By observing the distribution of the normalized ratio of Si atomic spectral line intensity and Si ionic spectral line intensity as functions of distance and temperature, the maximum value of normalized ratio appeared at the longer distance as the initial temperature was higher, while the maximum ratio appeared at the shorter distance as the sample temperature was lower.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0307701)the National Natural Science Foundation of China (Grant Nos. 11974138, 11674128, and 11674124)。
文摘Laser-induced breakdown spectroscopy(LIBS) is a good technique for detecting and analyzing material elements due to the plasma emission produced by the high-power laser pulse. Currently, a significant topic of LIBS research is improving the emission intensity of LIBS. This study investigated the effect of laser-polarization on femtosecond laser-ablated Cu plasma spectra at different sample temperatures. The measured lines under circularly polarized lasers were higher than those under linearly and elliptically polarized lasers. The enhancement effect was evident at higher Cu temperatures when comparing the plasma spectra that have circular and linear polarizations for different target temperatures. To understand the influence of laser-polarization and sample temperature on signal intensity, we calculated the plasma temperature(PT)and electron density(ED). The change in PT and ED was consistent with the change in the atomic lines as the laser polarization was being adjusted. When raising the Cu temperature, the PT increased while the ED decreased. Raising the Cu temperature whilst adjusting the laser-polarization is effective for improving the signal of femtosecond LIBS compared to raising the initial sample temperature alone or only changing the laser polarization.
基金support of National Natural Science Foundation of China(Nos.11674128,11674124 and 11974138)the Scientific and Technological Research Project of the Education Department of Jilin Province,China(No.JJKH20200937KJ)。
文摘In this paper,we investigate the time-resolved spectroscopy of collinear femtosecond(fs)and nanosecond(ns)dual-pulse(DP)laser-induced plasmas.A copper target was used as an experimental sample,and the fs laser was considered as the time zero reference point.The interpulse delay between fs and ns laser beams was 3μs.First,we compared the time-resolved peak intensities of Cu(I)lines from Cu plasmas induced by fs+ns and ns+fs DP lasers with collinear configuration.The results showed that compared with the ns+fs DP,the fs+ns DP laser-induced Cu plasmas had stronger peak intensities and longer lifetimes.Second,we calculated time-resolved plasma temperatures using the Boltzmann plot with three spectral lines at Cu(I)510.55,515.32 and 521.82 nm.In addition,time-resolved electron densities were calculated based on Stark broadening with Cu(I)line at 521.82 nm.It was found that compared with ns+fs DP,the plasma temperatures and electron densities of the Cu plasmas induced by fs+ns DP laser were higher.Finally,we observed images of ablation craters under the two experimental conditions and found that the fs+ns DP laser-produced stronger ablation,which corresponded to stronger plasma emission.
基金support by National Natural Science Foundation of China (Nos. 11674128, 11674124 and 11974138)the Jilin Province Scientific and Technological Development Program, China (No. 20170101063JC)。
文摘Spectral intensity,electron temperature and density of laser-induced plasma(LIP) are important parameters for affecting sensitivity of laser-induced breakdown spectroscopy(LIBS).Increasing target temperature is an easy and feasible method to improve the sensitivity.In this paper,a brass target in a temperature range from 25℃ to 200℃ was ablated to generate the LIP using femtosecond pulse.Time-resolved spectral emission of the femtosecond LIBS was measured under different target temperatures.The results showed that,compared with the experimental condition of 25℃,the spectral intensity of the femtosecond LIP was enhanced with more temperature target.In addition,the electron temperature and density were calculated by Boltzmann equation and Stark broadening,indicating that the changes in the electron temperature and density of femtosecond LIP with the increase of the target temperature were different from each other.By increasing the target temperature,the electron temperature increased while the electron density decreased.Therefore,in femtosecond LIBS,a hightemperature and low-density plasma with high emission can be generated by increasing the target temperature.The increase in the target temperature can improve the resolution and sensitivity of femtosecond LIBS.
基金supported by National Key Research and Development Program of China(2018YFD1000703,2018YFD1000700)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB11020400)+3 种基金National Program on Research and Development of Transgenic Plants(2016ZX08009-003-001)Startup Fund for Advanced Talents of Lushan Botanical GardenChinese Academy of Science(2020ZWZX03 and 2020ZWZX05)the“Double Hundred and Double Thousand”Talent Project of Jiujiang City(jjsbsq2020026)。
文摘Plants use a sophisticated immune system to perceive pathogen infection and activate immune responses in a tightly controlled manner.In barley,Hv WRKY2 acts as a repressor in barley disease resistance to the powdery mildew fungus,Blumeria graminis f.sp.hordei(Bgh).However,the molecular features of Hv WRKY2 in its DNA-binding and repressor functions,as well as its target genes,are uncharacterized.We show that the W-box binding of Hv WRKY2 requires an intact WRKY domain and an upstream sequence of~75 amino acids,and the Hv WRKY2 W-box binding activity is linked to its repressor function in disease resistance.Chromatin immunoprecipitation(ChIP)-seq analysis identified HvCEBiP,a putative chitin receptor gene,as a target gene of Hv WRKY2 in overexpressing transgenic barley plants.ChIP-qPCR and Electrophoretic Mobility Shift Assay(EMSA)verified the direct binding of Hv WRKY2 to a W-boxcontaining sequence in the HvCEBiP promoter.Hv CEBiP positively regulates resistance against Bgh in barley.Our findings suggest that Hv WRKY2 represses barley basal immunity by directly targeting pathogen-associated molecular pattern(PAMP)recognition receptor genes,suggesting that Hv CEBiP and likely chitin signaling function in barley PAMP-triggered immune responses to Bgh infection.
文摘This study presents a thorough investigation of the relationship between the coronavirus disease 2019(COVID-19)and daily stock price changes.We use several types of COVID-19 patients as indicators for exploring whether stock prices are significantly affected by COVID-19’s impact.In addition,using the Chinese stock market as an example,we are particularly interested in the psychological and industrial impacts of COVID-19 on the financial market.This study makes two contributions to the literature.First,from a theoretical perspective,it shows a novel quantitative relationship between the psychological response to the pandemic and stock prices.In addition,it depicts the mechanism of the shock to the stock market by pointing out the specific functional expression of the impulse reaction.To our knowledge,this is the first theoretical calculation of the impulse of a shock to the financial market.Second,this study empirically estimates the marginal effect of the COVID-19 pandemic on fluctuations in stock market returns.By controlling for stock fundamentals,this study also estimates diverse industrial responses to pandemic stock volatility.We confirm that the COVID-19 pandemic has caused panic in the stock market,which not only depresses stock prices but also inflates volatility in daily returns.Regarding the impulse of the shock,we identify the cumulative level of the pandemic variables as well as their incremental differences.As shown by our empirical results,the terms for these differences will eventually dominate the marginal effect,which confirms the fading impulse of the shock.Finally,this study highlights some important policy implications of stock market volatility and returns to work in the industry.
基金support by National Natural Science Foundation of China (Grant Nos. 11674128, 11504129, and 11674124)Jilin Province Scientific and Technological Development Program, China (Grant No. 20170101063JC)Fundamental Research Project of Chinese State Key Laboratory of Laser Interaction with Matter (Grant No. SKLLIM1605)
文摘In double-pulse laser-induced breakdown spectroscopy(DP-LIBS), the collinear femtosecond double-pulse laser configuration is experimentally investigated with different initial sample temperatures using a Ti:sapphire laser. The glass sample is ablated to produce the plasma spectroscopy. During the experiment, the detected spectral lines include two Na(I) lines(589.0 nm and 589.6 nm) and one Ca(I) line at the wavelength of 585.7 nm. The emission lines are measured at room temperature(22 ℃) and three higher initial sample temperatures(T_s?=?100 ℃, 200 ℃, and 250 ℃). The inter-pulse delay time ranges from-250 ps to 250 ps.The inter-pulse delay time and the sample temperature strongly influence the spectral intensity,and the spectral intensity can be significantly enhanced by increasing the sample temperature and selecting the optimized inter-pulse time. For the same inter-pulse time of 0 ps(single-pulse LIBS), the enhancement ratio is approximately 2.5 at T_s?=?200 ℃ compared with that obtained at T_s?=?22 ℃. For the same inter-pulse time of 150 ps, the enhancement ratio can be up to 4 at T_s?=?200 ℃ compared with that obtained at T_s?=?22 ℃. The combined enhancement effects of the different initial sample temperatures and the double-pulse configuration in femtosecond LIBS are much stronger than that of the different initial sample temperatures or the double-pulse configuration only.
基金support by National Natural Science Foundation of China(Nos.11674128,11674124 and 11974138)Scientific and Technological Research Project of the Education Department of Jilin Province in China(No.JJKH20200937KJ).
文摘In this study, a femtosecond laser was focused to ablate brass target and generate plasma emission in air. The influence of lens to sample distance(LTSD) on spectral emission of brass plasma under linearly and circularly polarized pulses with different pulse energies was investigated. The results indicated that the position with the strongest spectral emission moved toward focusing lens with increasing the energy. At the same laser energy, the line emission under circularly polarized pulse was stronger compared with linearly polarized pulse for different LTSDs. Next, electron temperature and density of the plasma were obtained with Cu(Ⅰ) lines,indicating that the electron temperature and density under circularly polarized pulse were higher compared to that under linearly polarized pulse. Therefore, changing the laser polarization is a simple and effective way to improve the spectral emission intensity of femtosecond laserinduced plasma.
基金support by Scientific and Technological Research Project of the Education Department of Jilin Province,China(No.JJKH20200937KJ)National Natural Science Foundation of China(Nos.11674128,11674124,and 11974138).
文摘The influence of the target temperature on the molecular emission of femtosecond laser-induced breakdown spectroscopy(LIBS) was investigated experimentally. An Al target was ablated to produce laser-induced plasma. The Al target was uniformly heated to a maximum of 250℃. The measured molecular emission was AlO(△ν=0) from the femtosecond LIBS of the Al target.The measurements indicated that the molecular emission of AlO increased as the temperature of the Al target increased. In addition, a two-temperature model was used to simulate the evolution of the electron and lattice temperature of the Al target with different initial temperatures. The simulated results showed that the electron and lattice temperatures of Al irradiated by the femtosecond laser increased as the initial temperature of the Al target increased;also, the simulated ablated depth increased. Therefore, an increase in the initial Al target temperature resulted in an enhancement in the spectral signal of AlO from the femtosecond LIBS of Al,which was directly related to the increase in the size of the ablated crater. The study suggested that increasing the temperature of the target improves the intensity of molecular emission in femtosecond LIBS.
基金the support by the Scientific and Technological Research Project of the Education Department of Jilin Province, China (No. JJKH20200937KJ)National Natural Science Foundation of China (Nos. 11674128, 11674124 and 11974138)
文摘In this paper,we investigated the emission spectra of plasmas produced from femtosecond and nanosecond laser ablations at different target temperatures in air.A brass was selected as ablated target of the experiment.The results indicated that spectral emission intensity and plasma temperature showed similar trend for femtosecond and nanosecond lasers,and the two parameters were improved by increasing the sample temperature in both cases.Moreover,the temperature of nanosecond laser-excited plasma was higher compared with that of femtosecond laser-excited plasma,and the increase of the plasma temperature in the case of nanosecond laser was more evident.In addition,there was a significant difference in electron density between femtosecond and nanosecond laser-induced plasmas.The electron density for femtosecond laser decreased with increasing the target temperature,while for nanosecond laser,the electron density was almost unchanged at different sample temperatures.
基金supported by the National Key Research and Development Program of China (2020YFA0908200)the National Natural Science Foundation of China (82271204, 81771138, and32000937)+1 种基金the Shanghai Municipal Health Commission(20204Y0354)Sanming Project of Medicine in Shenzhen(SZSM202211007)。
文摘Adequate drug delivery across the blood–brain barrier(BBB) is a critical factor in treating central nervous system(CNS) disorders. Inspired by swimming fish and the microstructure of the nasal cavity, this study is the first to develop swimming short fibrous nasal drops that can directly target the nasal mucosa and swim in the nasal cavity, which can effectively deliver drugs to the brain. Briefly, swimming short fibrous nasal drops with charged controlled drug release were fabricated by electrospinning, homogenization,the π-π conjugation between indole group of fibers, the benzene ring of leucine-rich repeat kinase 2(LRRK2) inhibitor along with charge-dipole interaction between positively charged poly-lysine(PLL)and negatively charged surface of fibers;this enabled these fibers to stick to nasal mucosa, prolonged the residence time on mucosa, and prevented rapid mucociliary clearance. In vitro, swimming short fibrous nasal drops were biocompatible and inhibited microglial activation by releasing an LRRK2 inhibitor. In vivo, luciferase-labelled swimming short fibrous nasal drops delivered an LRRK2 inhibitor to the brain through the nasal mucosa, alleviating cognitive dysfunction caused by sepsis-associated encephalopathy by inhibiting microglial inflammation and improving synaptic plasticity. Thus, swimming short fibrous nasal drops is a promising strategy for the treatment of CNS diseases.
基金This work was supported by the Health Care Center and Laboratory in the Fourth Affiliated Hospital of Xinjiang Medical University.
文摘This study investigates the relationship between hyperuricemia and metabolic syndrome(MS)among males of Han ethnicity in the Xinjiang Uygur Autonomous Region,China.The blood samples were collected from January to May,2006 in Urumqi.It included 1496 subjects with ages between 20 to 70 years.All these subjects had physical examinations,blood pressure(BP)measurement and analysis for serum uric acid(SUA),fasting blood sugar(FBS),serum triglycer-ide(TG),serum total cholesterol(TC),serum high den-sity lipoprotein(HDL-C)and serum low density lipoprotein(LDL-C)as well as biochemistry assay.The Data were analyzed using the Pearson Chi-Square Test,Independent-Samples T-Test and the Mantel-Haenszel Test for linear trend,respectively.The results show that the prevalence of MS in the present study was 18%.Blood pressure,fasting blood sugar,body mass index(BMI),waist/hip ratio(WHR),TG,TC and LDL-C were significantly higher in the hyperuricemic group than in normal group and these parameters were strongly related to serum uric acid levels.The com-ponents of metabolic syndrome such as obesity,hyper-glycemia,hypertension and dyslipidemia had a close correlation with SUA.The Odds ratios of these meta-bolic diseases in the hyperuricemic group were 3.097 times,2.633 times,2.226 times and 3.058 times of the normal SUA group,respectively.They all have a positive correlation with hyperuricemia.Hyperurice-mia is closely linked to the various components of the metabolic syndrome.More emphasis should be put on the evolving control and prevalence of hyperuricemia and metabolic syndrome among males of Han ethnicity in Xinjiang.