Due to sexual dimorphism in the growth of certain cultured fish species,the production of monosex fishes is desirable for the aquaculture industry.Nowadays,the most widely practiced technique available for the mass pr...Due to sexual dimorphism in the growth of certain cultured fish species,the production of monosex fishes is desirable for the aquaculture industry.Nowadays,the most widely practiced technique available for the mass production of monosex fish populations is sex steroid-induced sex reversal.Here,a novel strategy for the successful production of all-female(AF)common carp(Cyprinus carpio L.),to take advantage of the sexual dimorphism in growth documented in this species,has been developed using genetic engineering via single gene-targeting manipulation without any exogenous hormone treatments.Male and female heterozygous cyp17a1-deficient common carp were first obtained using the clustered regularly interspaced short palindromic repeats/CRISPR-associated endonuclease 9(CRISPR/Cas9)technique.An all-male phenotype for homozygous cyp17a1-deficient carp,regardless of the individuals’sexdetermination genotypes(XY or XX),has been observed.A male-specific DNA marker newly identified in our laboratory was used to screen the neomale carp population with the XX genotype from the cyp17a1-deficient carp.These neomale carp develop a normal testis structure with normal spermatogenesis and sperm capacity.The neomale common carp were then mated with wild-type(WT)females(cyp17a1^(+/+)XX genotype)using artificial fertilization.All the AF offspring sample fish from the neomale-WT female mating were confirmed as having the cyp17a^(1+/-)XX genotype,and normal development of gonads to ovaries was observed in 100.00%of this group at eight months post-fertilization(mpf).A total of 1000 carp fingerlings,500 from the WT male and female and 500 from the neomale and WT female mating,were mixed and reared in the same pond.The average body weight of cyp17a1^(+/-)XX females was higher by 6.60%(8 mpf)and 32.66%(12 mpf)than that of the control common carp.Our study demonstrates the first successful production of a monosex teleost population with the advantages of sexual dimorphism in growth using genetic manipulation targeting a single locus.展开更多
The endocrine regulatory roles of the hypothalamic-pituitary-adrenocortical axis on anxiety-like behavior and metabolic status have been found throughout animal taxa.However,the precise effects of the balancing adrena...The endocrine regulatory roles of the hypothalamic-pituitary-adrenocortical axis on anxiety-like behavior and metabolic status have been found throughout animal taxa.However,the precise effects of the balancing adrenal corticosteroid biosynthesis under the influence of adrenocorticotrophic hormone(ACTH),a pro-opiomelanocortin(POMC)-derived peptide,on animal energy expenditure and somatic growth remain unknown.POMC has also been identified as one of the candidate loci for polycystic ovary syndrome,which features hyperandrogenism and some prevalence of obesity in patients.Here we show that zebrafish lacking functional POMCa exhibit similar phenotypes of stress response and body weight gain but not obesity as observed in mammalian models.In contrast with the impaired anorexigenic signaling cascade of melanocyte-stimulating hormones and leptin,which are responsible for their obesity-prone weight gain observed in various pome mutant mammals,analyses with our pomca mutant series indicate that ACTH is the key regulator for the phenotype with enhanced somatic growth without obesity in pomca-deficient zebrafish.Hypocortisolism associated with hyperandrogenism has been observed in the pomca-deficient zebrafish,with enhanced activation of mammalian target of rapamycin complex 1;reutilization of amino acids and fatty acid^-oxidation are observed in the muscle tissue of the pomca-deficient fish.After reducing hyperandrogenism by crossing our pomca mutant fish with a cy p l 7a 1-deficient background,the phenotype of enhanced somatic growth in pomca-deficient fish was no longer observed.Thus,our work also demonstrated that the role of POMCa in stress response seems to be conserved in vertebrates,whereas its effect on adipostasis is unique to teleosts.展开更多
Improvement in fish feed conversion efficiency(FCE)is beneficial for sustaining global food fish supplies.Here,we show that a set of polymorphisms at locus of the corticotropin releasing hormone receptor 2(crhr2),whic...Improvement in fish feed conversion efficiency(FCE)is beneficial for sustaining global food fish supplies.Here,we show that a set of polymorphisms at locus of the corticotropin releasing hormone receptor 2(crhr2),which is involved in hypothalamuspituitary-interrenal(HPI)axis signaling,is associated with improved FCE in farmed allogynogenetic gibel carp strain CAS Ⅲ compared with that in the wild gibel carp strain Dongting(DT).This set of polymorphisms downregulates the expression levels of crhr2 mRNA in the brain and pituitary tissues in gibel carp strain CAS Ⅲ compared with those in strain DT.Furthermore,compromised HPI axis signaling is observed in gibel carp strain CAS Ⅲ,such as decreased α-melanocyte stimulating hormone protein levels,plasma cortisol content,and stress responses.Moreover,enhanced activation of protein kinase B/mammalian target of rapamycin complex 1 signaling observed in the muscle tissue of strain CAS Ⅲ in comparison to that in strain DT indicated elevated anabolic metabolism in strain CAS Ⅲ.Thus,these studies demonstrate that the genetic markers associated with compromised HPI axis signaling,such as crhr2,are potentially useful for genetic selection toward improvement in farmed fish growth and FCE,which would reduce fishmeal consumption and thereby indirectly facilitate sustainable fisheries.展开更多
基金the National Key Research and Development Program,China(2018YFD0900205)to Zhan Yinthe National Natural Science Foundation,China(31972779 and 31530077)to Gang Zhai and Zhan Yin+2 种基金the Pilot Program A Project from the Chinese Academy of Sciences(XDA24010206)to Zhan Yinthe Youth Innovation Promotion Association of CAS(20200336)to Gang Zhaithe State Key Laboratory of Freshwater Ecology and Biotechnology(2016FBZ05)to Zhan Yin.
文摘Due to sexual dimorphism in the growth of certain cultured fish species,the production of monosex fishes is desirable for the aquaculture industry.Nowadays,the most widely practiced technique available for the mass production of monosex fish populations is sex steroid-induced sex reversal.Here,a novel strategy for the successful production of all-female(AF)common carp(Cyprinus carpio L.),to take advantage of the sexual dimorphism in growth documented in this species,has been developed using genetic engineering via single gene-targeting manipulation without any exogenous hormone treatments.Male and female heterozygous cyp17a1-deficient common carp were first obtained using the clustered regularly interspaced short palindromic repeats/CRISPR-associated endonuclease 9(CRISPR/Cas9)technique.An all-male phenotype for homozygous cyp17a1-deficient carp,regardless of the individuals’sexdetermination genotypes(XY or XX),has been observed.A male-specific DNA marker newly identified in our laboratory was used to screen the neomale carp population with the XX genotype from the cyp17a1-deficient carp.These neomale carp develop a normal testis structure with normal spermatogenesis and sperm capacity.The neomale common carp were then mated with wild-type(WT)females(cyp17a1^(+/+)XX genotype)using artificial fertilization.All the AF offspring sample fish from the neomale-WT female mating were confirmed as having the cyp17a^(1+/-)XX genotype,and normal development of gonads to ovaries was observed in 100.00%of this group at eight months post-fertilization(mpf).A total of 1000 carp fingerlings,500 from the WT male and female and 500 from the neomale and WT female mating,were mixed and reared in the same pond.The average body weight of cyp17a1^(+/-)XX females was higher by 6.60%(8 mpf)and 32.66%(12 mpf)than that of the control common carp.Our study demonstrates the first successful production of a monosex teleost population with the advantages of sexual dimorphism in growth using genetic manipulation targeting a single locus.
基金This work was supported by the National Key R&D Program of China(2018YFD0900404 to J.He and 2018YFD0900205 to Z.Y.)the National Natural Science Foundation of China(31530077 to Z.Y.)the Pilot Program A Project from the Chinese Academy of Sciences (XDA08010405 to Z.Y.).
文摘The endocrine regulatory roles of the hypothalamic-pituitary-adrenocortical axis on anxiety-like behavior and metabolic status have been found throughout animal taxa.However,the precise effects of the balancing adrenal corticosteroid biosynthesis under the influence of adrenocorticotrophic hormone(ACTH),a pro-opiomelanocortin(POMC)-derived peptide,on animal energy expenditure and somatic growth remain unknown.POMC has also been identified as one of the candidate loci for polycystic ovary syndrome,which features hyperandrogenism and some prevalence of obesity in patients.Here we show that zebrafish lacking functional POMCa exhibit similar phenotypes of stress response and body weight gain but not obesity as observed in mammalian models.In contrast with the impaired anorexigenic signaling cascade of melanocyte-stimulating hormones and leptin,which are responsible for their obesity-prone weight gain observed in various pome mutant mammals,analyses with our pomca mutant series indicate that ACTH is the key regulator for the phenotype with enhanced somatic growth without obesity in pomca-deficient zebrafish.Hypocortisolism associated with hyperandrogenism has been observed in the pomca-deficient zebrafish,with enhanced activation of mammalian target of rapamycin complex 1;reutilization of amino acids and fatty acid^-oxidation are observed in the muscle tissue of the pomca-deficient fish.After reducing hyperandrogenism by crossing our pomca mutant fish with a cy p l 7a 1-deficient background,the phenotype of enhanced somatic growth in pomca-deficient fish was no longer observed.Thus,our work also demonstrated that the role of POMCa in stress response seems to be conserved in vertebrates,whereas its effect on adipostasis is unique to teleosts.
基金supported by the National Key Research and Development Program of China(2018YFD0900404)the Pilot Program A Project from the Chinese Academy of Sciences(XDA24010206)+2 种基金State Key Laboratory of Freshwater Ecology and Biotechnology(2019FBZ05)the National Natural Science Foundation of China(31530077)China Postdoctoral Science Foundation(2020M682527)。
文摘Improvement in fish feed conversion efficiency(FCE)is beneficial for sustaining global food fish supplies.Here,we show that a set of polymorphisms at locus of the corticotropin releasing hormone receptor 2(crhr2),which is involved in hypothalamuspituitary-interrenal(HPI)axis signaling,is associated with improved FCE in farmed allogynogenetic gibel carp strain CAS Ⅲ compared with that in the wild gibel carp strain Dongting(DT).This set of polymorphisms downregulates the expression levels of crhr2 mRNA in the brain and pituitary tissues in gibel carp strain CAS Ⅲ compared with those in strain DT.Furthermore,compromised HPI axis signaling is observed in gibel carp strain CAS Ⅲ,such as decreased α-melanocyte stimulating hormone protein levels,plasma cortisol content,and stress responses.Moreover,enhanced activation of protein kinase B/mammalian target of rapamycin complex 1 signaling observed in the muscle tissue of strain CAS Ⅲ in comparison to that in strain DT indicated elevated anabolic metabolism in strain CAS Ⅲ.Thus,these studies demonstrate that the genetic markers associated with compromised HPI axis signaling,such as crhr2,are potentially useful for genetic selection toward improvement in farmed fish growth and FCE,which would reduce fishmeal consumption and thereby indirectly facilitate sustainable fisheries.