Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechani...Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechanisms of water-related micro-crack and the constitutive behaviors of rocks.In this work,we shall propose an extended micromechanical-based plastic damage model for understanding weakening effect induced by the presence of water between micro-crack’s surfaces on quasi-brittle rocks,based on the Mori-Tanaka homogenization and irreversible thermodynamics framework.Regarding the physical mechanism,water strengthens micro-crack propagation,which induces damage evolution during the pre-and post-stage,and weakens the elastic effective properties of rock matrix.After proposing a special calibration procedure for the determination of model parameters based on the laboratory compression tests,the proposed micromechanical-based model is verified by comparing the model predictions to the experimental results.The model effectively captures the mechanical behaviors of quasibrittle rocks subjected to the weakening effects of water.展开更多
Constitutive models play an essential role in numerical modeling and simulation of nonlinear deformation, progressive damage and failure of rock-like materials and structures. Recent advances in the quasi-brittle fiel...Constitutive models play an essential role in numerical modeling and simulation of nonlinear deformation, progressive damage and failure of rock-like materials and structures. Recent advances in the quasi-brittle field show that upscaling methods by homogenization have provided a new efficient way to derive macroscopic formulations of rocks from their microstructure information and local properties and then to model nonlinear mechanical behaviors identified at laboratory. This paper aims first at relating the mechanical phenomena on sample scale to their respective mechanisms on microscale. Main focus is put on unilateral effects due to crack’s opening/closure transition, material anisotropy induced by crack growth in some preferred directions and multiphysical coupling at microcracks. After a brief introduction to the linear homogenization method and its application to crack problems, we present some recent advances achieved in the combined homogenization/thermodynamics framework, including anisotropic unilateral damage-friction coupling, theoretical failure prediction in conjunction with deformation analyses, poromechanical coupling, analytical solutions and numerical implementation with application to typical brittle rocks.展开更多
By incorporating two different fracture mechanisms and salient unilateral effects in rock materials,we propose a thermomechanical phase-field model to capture thermally induced fracture and shear heating in the proces...By incorporating two different fracture mechanisms and salient unilateral effects in rock materials,we propose a thermomechanical phase-field model to capture thermally induced fracture and shear heating in the process of rock failure.The heat conduction equation is derived,from which the plastic dissipation is treated as a heat source.We then ascertain the effect of the non-associated plastic flow on frictional dissipation and show how it improves the predictive capability of the proposed model.Taking advantage of the multiscale analysis,we propose a phase-field-dependent thermal conductivity with considering the unilateral effect of fracture.After proposing a robust algorithm for solving involved three-field coupling and damage-plasticity coupling problems,we present three numerical examples to illustrate the abilities of our proposed model in capturing various thermo-mechanically coupled behaviors.展开更多
The complex and special mechanical properties of Xiyu conglomerate are of great significance to the construction of water conservancy and hydropower engineering.The crack characteristic stress,dilatancy behavior,and f...The complex and special mechanical properties of Xiyu conglomerate are of great significance to the construction of water conservancy and hydropower engineering.The crack characteristic stress,dilatancy behavior,and failure mechanism of Xiyu conglomerate collected from Momoke Water Control Project,southwestern China,were analyzed and discussed based on the experimental results of triaxial compression test and 3D X-ray computed tomography test.The results show that with increasing confining pressure,the deformation characteristics and all characteristic stresses increase monotonically,while the dilation angle and dilatancy index decrease,and exponential function model can accurately describe the evolution rule of dilatancy index with confining pressure.While the porosity is negatively correlated with confining pressure.The failure modes of Xiyu conglomerate include axial tensile cracks,shear cracks,local cross cracks and cracks around gravel.With increasing confining pressure,the failure modes transform from tension cracks to shear cracks.A non-associated micromechanical damage model considering pressure dependent matrix presenting tension-compression asymmetry is proposed and applied to Xiyu conglomerate with pores and a large number of gravels.By comparing numerical calculations and experimental results,the proposed micromechanical plastic damage model is able to describe the mechanical behavior of Xiyu conglomerate.展开更多
The CT technique was first applied to observing the nasal cavity of Ikechosaurus sunailinae. The results indicate that the nasal cavity is very complex, and it was divided into two parts: the posterior-upper part and ...The CT technique was first applied to observing the nasal cavity of Ikechosaurus sunailinae. The results indicate that the nasal cavity is very complex, and it was divided into two parts: the posterior-upper part and the anterior-lower one. These control olfaction and ther-展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.42001053 and 42277147)the General Scientific Research Fund of Zhejiang Provincial Education Department(No.Y202352363)the University Natural Science Foundation of Jiangsu Province(No.23KJD130001)。
文摘Water effects on the mechanical properties of rocks have been extensively investigated through experiments and numerical models.However,few studies have established a comprehensive link between the microscopic mechanisms of water-related micro-crack and the constitutive behaviors of rocks.In this work,we shall propose an extended micromechanical-based plastic damage model for understanding weakening effect induced by the presence of water between micro-crack’s surfaces on quasi-brittle rocks,based on the Mori-Tanaka homogenization and irreversible thermodynamics framework.Regarding the physical mechanism,water strengthens micro-crack propagation,which induces damage evolution during the pre-and post-stage,and weakens the elastic effective properties of rock matrix.After proposing a special calibration procedure for the determination of model parameters based on the laboratory compression tests,the proposed micromechanical-based model is verified by comparing the model predictions to the experimental results.The model effectively captures the mechanical behaviors of quasibrittle rocks subjected to the weakening effects of water.
基金financial support from the National Natural Science Foundation of China (Grant No. 51679068)the Fundamental Research Funds for the Central Universities (Grant Nos. 2014B06914 and 2016B20214)
文摘Constitutive models play an essential role in numerical modeling and simulation of nonlinear deformation, progressive damage and failure of rock-like materials and structures. Recent advances in the quasi-brittle field show that upscaling methods by homogenization have provided a new efficient way to derive macroscopic formulations of rocks from their microstructure information and local properties and then to model nonlinear mechanical behaviors identified at laboratory. This paper aims first at relating the mechanical phenomena on sample scale to their respective mechanisms on microscale. Main focus is put on unilateral effects due to crack’s opening/closure transition, material anisotropy induced by crack growth in some preferred directions and multiphysical coupling at microcracks. After a brief introduction to the linear homogenization method and its application to crack problems, we present some recent advances achieved in the combined homogenization/thermodynamics framework, including anisotropic unilateral damage-friction coupling, theoretical failure prediction in conjunction with deformation analyses, poromechanical coupling, analytical solutions and numerical implementation with application to typical brittle rocks.
基金funding provided by the National Natural Science Foundation of China(No.12202137)TY's contribution is funded by the China and Germany Postdoctoral Exchange Program(Grant No.ZD202137).The first author(TY)would like to express his gratitude to Prof.Keita Yoshioka for reviewing this manuscript and for his invaluable feedback.
文摘By incorporating two different fracture mechanisms and salient unilateral effects in rock materials,we propose a thermomechanical phase-field model to capture thermally induced fracture and shear heating in the process of rock failure.The heat conduction equation is derived,from which the plastic dissipation is treated as a heat source.We then ascertain the effect of the non-associated plastic flow on frictional dissipation and show how it improves the predictive capability of the proposed model.Taking advantage of the multiscale analysis,we propose a phase-field-dependent thermal conductivity with considering the unilateral effect of fracture.After proposing a robust algorithm for solving involved three-field coupling and damage-plasticity coupling problems,we present three numerical examples to illustrate the abilities of our proposed model in capturing various thermo-mechanically coupled behaviors.
基金supported by National Natural Science Foundation of China(Nos.12102129 and 12072102)the Water Science and Technology Special Fund of Xinjiang Uygur Autonomous Region(No.XSKJ-2023-30)+1 种基金the Central University Basic Research Fund of China(Nos.B220202014 and B230201059)the Key Laboratory of Safe Mining of Deep Metal Mines,Ministry of Education(No.DM2022B01)。
文摘The complex and special mechanical properties of Xiyu conglomerate are of great significance to the construction of water conservancy and hydropower engineering.The crack characteristic stress,dilatancy behavior,and failure mechanism of Xiyu conglomerate collected from Momoke Water Control Project,southwestern China,were analyzed and discussed based on the experimental results of triaxial compression test and 3D X-ray computed tomography test.The results show that with increasing confining pressure,the deformation characteristics and all characteristic stresses increase monotonically,while the dilation angle and dilatancy index decrease,and exponential function model can accurately describe the evolution rule of dilatancy index with confining pressure.While the porosity is negatively correlated with confining pressure.The failure modes of Xiyu conglomerate include axial tensile cracks,shear cracks,local cross cracks and cracks around gravel.With increasing confining pressure,the failure modes transform from tension cracks to shear cracks.A non-associated micromechanical damage model considering pressure dependent matrix presenting tension-compression asymmetry is proposed and applied to Xiyu conglomerate with pores and a large number of gravels.By comparing numerical calculations and experimental results,the proposed micromechanical plastic damage model is able to describe the mechanical behavior of Xiyu conglomerate.
文摘The CT technique was first applied to observing the nasal cavity of Ikechosaurus sunailinae. The results indicate that the nasal cavity is very complex, and it was divided into two parts: the posterior-upper part and the anterior-lower one. These control olfaction and ther-