期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Characteristics of electromagnetic vector field generated from rock fracturing 被引量:1
1
作者 Menghan Wei Dazhao Song +3 位作者 Xueqiu He quan lou Liming Qiu Zhenlei Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第2期457-466,共10页
Rock fracturing is often accompanied by electromagnetic phenomenon.As a vector field,in addition to the intensity that is widely concerned,the generated electromagnetic field also has obvious direction-ality.To this e... Rock fracturing is often accompanied by electromagnetic phenomenon.As a vector field,in addition to the intensity that is widely concerned,the generated electromagnetic field also has obvious direction-ality.To this end,a set of electromagnetic antennas capable of simultaneous three-axis measurement is used to monitor the electromagnetic vector field generated from rock fracturing based on Brazilian tests.The signal amplitude on each axis can represent the magnitude of actual magnetic flux density component on the three axes.The intensity and directional characteristics of electromagnetic signals received at different positions are studied using vector synthesis.The directionality of electromagnetic radiation measured using a three-axis electromagnetic antenna shows that the direction of the magnetic flux intensity generated by rock fracturing tends to be parallel to the crack surface,and the measured signal intensity is greater in a direction closer to the crack surface. 展开更多
关键词 Electromagnetic radiation DIRECTIONALITY Vector field Rock fracturing
下载PDF
Fast 3D joint inversion of gravity and magnetic data based on cross gradient constraint
2
作者 Sheng Liu Xiangyun Wan +6 位作者 Shuanggen Jin Bin Jia Songbai Xuan quan lou Binbin Qin Rongfu Peng Dali Sun 《Geodesy and Geodynamics》 EI CSCD 2023年第4期331-346,共16页
The gravity and magnetic data can be adopted to interpret the internal structure of the Earth.To improve the calculation efficiency during the inversion process and the accuracy and reliability of the reconstructed ph... The gravity and magnetic data can be adopted to interpret the internal structure of the Earth.To improve the calculation efficiency during the inversion process and the accuracy and reliability of the reconstructed physical property models,the triple strategy is adopted in this paper to develop a fast cross-gradient joint inversion for gravity and magnetic data.The cross-gradient constraint contains solving the gradients of the physical property models and performing the cross-product calculation of their gradients.The sparse matrices are first obtained by calculating the gradients of the physical property models derived from the first-order finite difference.Then,the triple method is applied to optimize the storages and the calculations related to the gradients of the physical property models.Therefore,the storage compression amount of the calculations related to the gradients of the physical property models and the cross-gradient constraint are reduced to one-fold of the number of grid cells at least,and the compression ratio increases with the increase of the number of grid cells.The test results from the synthetic data and field data prove that the structural coupling is achieved by using the fast cross-gradient joint inversion method to effectively reduce the multiplicity of solutions and improve the computing efficiency. 展开更多
关键词 Gravity and magnetic data Joint inversion TRIPLE Cross-gradient constraint
下载PDF
Joint inversion of gravity and vertical gradient data based on modified structural similarity index for the structural and petrophysical consistency constraint
3
作者 Sheng Liu Xiangyun Wan +6 位作者 Shuanggen Jin Bin Jia quan lou Songbai Xuan Binbin Qin Yiju Tang Dali Sun 《Geodesy and Geodynamics》 EI CSCD 2023年第5期485-499,共15页
Joint inversion is one of the most effective methods for reducing non-uniqueness for geophysical inversion.The current joint inversion methods can be divided into the structural consistency constraint and petrophysica... Joint inversion is one of the most effective methods for reducing non-uniqueness for geophysical inversion.The current joint inversion methods can be divided into the structural consistency constraint and petrophysical consistency constraint methods,which are mutually independent.Currently,there is a need for joint inversion methods that can comprehensively consider the structural consistency constraints and petrophysical consistency constraints.This paper develops the structural similarity index(SSIM)as a new structural and petrophysical consistency constraint for the joint inversion of gravity and vertical gradient data.The SSIM constraint is in the form of a fraction,which may have analytical singularities.Therefore,converting the fractional form to the subtractive form can solve the problem of analytic singularity and finally form a modified structural consistency index of the joint inversion,which enhances the stability of the SSIM constraint applied to the joint inversion.Compared to the reconstructed results from the cross-gradient inversion,the proposed method presents good performance and stability.The SSIM algorithm is a new joint inversion method for petrophysical and structural constraints.It can promote the consistency of the recovered models from the distribution and the structure of the physical property values.Then,applications to synthetic data illustrate that the algorithm proposed in this paper can well process the synthetic data and acquire good reconstructed results. 展开更多
关键词 Joint inversion Gravity and vertical gradient data Modified structural similarity index
下载PDF
Experimental study on the infrared precursor characteristics of gas-bearing coal failure under loading 被引量:4
4
作者 Shan Yin Zhonghui Li +4 位作者 Dazhao Song Xueqiu He Liming Qiu quan lou He Tian 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第5期901-912,共12页
The stress and gas pressure in deep coal seams are very high,and instability and failure rapidly and intensely occur.It is important to study the infrared precursor characteristics of gas-bearing coal instability and ... The stress and gas pressure in deep coal seams are very high,and instability and failure rapidly and intensely occur.It is important to study the infrared precursor characteristics of gas-bearing coal instability and failure.In this paper,a self-developed stress-gas coupling failure infrared experimental system was used to analyse the infrared radiation temperature(IRT)and infrared thermal image precursor characteristics of gas-free coal and gas-bearing coal.The changes in the areas of the infrared temperature anomalous precursor regions and the effect of the gas on the infrared precursors were examined.The results show that high-temperature anomalous precursors arise mainly when the gas-free coal fails under loading,whereas the gas-bearing coal has high-temperature and low-temperature anomalous precursors.The area of the high-temperature anomalous precursor is approximately 30%–40%under gasbearing coal unstable failure,which is lower than the 60%–70%of the gas-free coal.The area of the low-temperature abnormal precursor is approximately 3%–6%,which is higher than the 1%–2%of the gas-free coal.With increasing gas pressure,the area of the high-temperature anomalous precursor gradually decreases,and the area of the low-temperature anomalous precursor gradually increases.The highand low-temperature anomalous precursors of gas-bearing coal are mainly caused by gas desorption,volume expansion,and thermal friction.The presence of gas inhibits the increase in IRT on the coal surface and increases the difficulty of infrared radiation(IR)monitoring and early warning for gas-bearing coal. 展开更多
关键词 Gas–bearing coal Gas pressure Infrared temperature Infrared thermal image Infrared precursory law
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部