The continuous rainy precipitation process from February to March in 2019 was selected to analyze the effect of meteorological service in Tangpu Reservoir basin,so as to sum up service experience and then lay a better...The continuous rainy precipitation process from February to March in 2019 was selected to analyze the effect of meteorological service in Tangpu Reservoir basin,so as to sum up service experience and then lay a better foundation for subsequent services.In response to the rainy weather from December 2018 to early 2019,three rounds of flood discharge were carried out in Tangpu Reservoir.During February-March in 2019,the hit rate of short-term area rainfall forecast for Tangpu Reservoir was 80.0%.Compared with the median of forecast interval,the average absolute error was 7.6 mm,and the relative error was 32.7%.The large deviation in the forecast from March 27 to 28 was deeply analyzed,and it is found that the main reasons were excessive reliance on and trust in a single model,insufficient correction of the actual situation,and insufficient judgment of the nature of precipitation.For the future reservoir meteorological service,three aspects of thinking were put forward,such as further strengthening the sharing of hydrological and meteorological information,improving the forecasting ability,and deepening the research of runoff forecast models.展开更多
[ Objective] The research aimed to analyze extreme circulation characteristics at 500 hPa of height field in Eurasian region in recent 20 years. [ Method ] Based on NCEP/NCAR reanalysis daily data at 500 hPa of height...[ Objective] The research aimed to analyze extreme circulation characteristics at 500 hPa of height field in Eurasian region in recent 20 years. [ Method ] Based on NCEP/NCAR reanalysis daily data at 500 hPa of height field from 1961 to 2009 of Eurasia (15° -80° N, 40° -150° E), seasonal and monthly change situations of extreme circulation in Eurasia were studied by the method of climatologically equally likely intervals ( CE- Ll). [Result] Growth rate of extremely low circulation increased in Eurasia in the last 20 years, but the rise amplitude was smaller. In the middle of China and Mongolia, grow rate change of extremely low circulation was the smallest. The growth rates of extremely high circulation in spring, au- tumn and winter gradually decreased as latitude rose. The maximum growth rate of extremely high circulation in summer was in Qinghai -Tibet Plat- eau, which corresponded with the climate characteristics of summer subtropical high going northward and then retreating southward. By contrasting the growth rates of extremely low and high circulation, it was clear that the growth rate of high circulation was higher than that of the low circulation. [Conusion] The research could be as a reference for studying change characteristics of the extreme climate event in China.展开更多
To develop pure aluminum alloys with high conductivity and strength, Al-0.2Ce and Al-0.2Ce-0.1Y alloys were prepared by rolling and annealing processes in this study. The effects of trace rare earth elements on the st...To develop pure aluminum alloys with high conductivity and strength, Al-0.2Ce and Al-0.2Ce-0.1Y alloys were prepared by rolling and annealing processes in this study. The effects of trace rare earth elements on the strength and electrical conductivity of the pure aluminum alloys were investigated. It is revealed that the addition of Ce and Y to pure aluminum can effectively enhance the strength and electrical conductivity of the alloys. In Al-0.2Ce, the addition of Ce can effectively refine the grain size of a-Al, with an average grain size of 90.68 μm in the as-cast state. The grain size of the alloy is further reduced to 87.55 μm by the simultaneous addition of Y. The synergistic addition of Ce and Y changes the properties of the alloy. The addition of Ce and Y also produces the Al_(11)Ce_(3) and Al_(3)Y second phases, which have coherent relationship with a-Al. The two-dimensional mismatch degree was calculated to be only 4.43%and 0.85%, respectively, which can provide a certain amount of nucleation substrate for a-Al in the incubation stage. The interfacial match between the L1_(2)structure of Al_(3)Y and a-Al was calculated using first-principles simulations. The results indicate that Al_(3)Y has a strong bonding effect with a-Al. Nanoscale second phases at grain boundaries can be effective in reducing resistivity due to dislocation motion.Nanoscale second phases with better matching interfaces to the substrate have no positive effect on the scattering motion of electrons.展开更多
The influence of Er_2 O_3 addition on the phase evolution and mechanical properties of sintered(1600 ℃,4 h) ZTA(yttria stabilized zirconia toughened alumina)-TiO_2 composites was investigated. The SEM and XRD results...The influence of Er_2 O_3 addition on the phase evolution and mechanical properties of sintered(1600 ℃,4 h) ZTA(yttria stabilized zirconia toughened alumina)-TiO_2 composites was investigated. The SEM and XRD results reveal the formation of a new erbium zirconium oxide,Zr_3 Er_4 O_(12),with a granulate morphology when Er_2 O_3 content is higher than 1 wt%. The grain sizes of both Al_2 O_3 and yttria-stabilized zirconia phases decrease with an increase in the Er_2 O_3 content. The relative density, Vickers hardness and fracture toughness of the composites are found to be strongly dependent on their grain sizes, relative densities and the formation of the Zr_3 Er_4 O_(12) secondary phases. The composite with 5 wt% Er_2 O_3 shows the highest relative density(99.93%), Vickers hardness(1752 HV) and fracture toughness(7.92 MPa·m^(1/2)).展开更多
Microstructure of the matrix directly influences the performance and the application of metal matrix composites. By using vacuum casting-infiltration method to manufacture casting tungsten carbide particle reinforced ...Microstructure of the matrix directly influences the performance and the application of metal matrix composites. By using vacuum casting-infiltration method to manufacture casting tungsten carbide particle reinforced composite, the addition of Ni can alter the microstructure of the matrix of composite. High carbon chromium steel was chosen as the substrate. The casting process was achieved at 1580 ℃ with vacuum degree of 0.072-0.078 MPa. Padding of the molten steel in each part of the preform was different, and the solidification of each part of the composite was different, too. Microstructure of the matrix was various in different parts of the composite. The Ni addition had enlarged the austenite zone in matrix, which would improve the corrosion resistance of the composite. The phase identification of the composite was performed by X-ray diffraction technique. The result showed that Fe3W3C was the primary precipitated carbide and its composition had a direct link with the decomposition of the casting tungsten carbide particles. The hardness of the matrix mainly depended on the reinforced carbide, i.e. Fe3W3C.展开更多
文摘The continuous rainy precipitation process from February to March in 2019 was selected to analyze the effect of meteorological service in Tangpu Reservoir basin,so as to sum up service experience and then lay a better foundation for subsequent services.In response to the rainy weather from December 2018 to early 2019,three rounds of flood discharge were carried out in Tangpu Reservoir.During February-March in 2019,the hit rate of short-term area rainfall forecast for Tangpu Reservoir was 80.0%.Compared with the median of forecast interval,the average absolute error was 7.6 mm,and the relative error was 32.7%.The large deviation in the forecast from March 27 to 28 was deeply analyzed,and it is found that the main reasons were excessive reliance on and trust in a single model,insufficient correction of the actual situation,and insufficient judgment of the nature of precipitation.For the future reservoir meteorological service,three aspects of thinking were put forward,such as further strengthening the sharing of hydrological and meteorological information,improving the forecasting ability,and deepening the research of runoff forecast models.
文摘[ Objective] The research aimed to analyze extreme circulation characteristics at 500 hPa of height field in Eurasian region in recent 20 years. [ Method ] Based on NCEP/NCAR reanalysis daily data at 500 hPa of height field from 1961 to 2009 of Eurasia (15° -80° N, 40° -150° E), seasonal and monthly change situations of extreme circulation in Eurasia were studied by the method of climatologically equally likely intervals ( CE- Ll). [Result] Growth rate of extremely low circulation increased in Eurasia in the last 20 years, but the rise amplitude was smaller. In the middle of China and Mongolia, grow rate change of extremely low circulation was the smallest. The growth rates of extremely high circulation in spring, au- tumn and winter gradually decreased as latitude rose. The maximum growth rate of extremely high circulation in summer was in Qinghai -Tibet Plat- eau, which corresponded with the climate characteristics of summer subtropical high going northward and then retreating southward. By contrasting the growth rates of extremely low and high circulation, it was clear that the growth rate of high circulation was higher than that of the low circulation. [Conusion] The research could be as a reference for studying change characteristics of the extreme climate event in China.
基金Project supported by the Major Science and Technology Projects in Yunnan Province(202202AG050011)Central Government-led Local Science and Technology Development Project(202207AB110003)+1 种基金Yunnan Applied Basic Research Project(202101AT070123)Yunnan Key Research and Development Program(202103AF140004)。
文摘To develop pure aluminum alloys with high conductivity and strength, Al-0.2Ce and Al-0.2Ce-0.1Y alloys were prepared by rolling and annealing processes in this study. The effects of trace rare earth elements on the strength and electrical conductivity of the pure aluminum alloys were investigated. It is revealed that the addition of Ce and Y to pure aluminum can effectively enhance the strength and electrical conductivity of the alloys. In Al-0.2Ce, the addition of Ce can effectively refine the grain size of a-Al, with an average grain size of 90.68 μm in the as-cast state. The grain size of the alloy is further reduced to 87.55 μm by the simultaneous addition of Y. The synergistic addition of Ce and Y changes the properties of the alloy. The addition of Ce and Y also produces the Al_(11)Ce_(3) and Al_(3)Y second phases, which have coherent relationship with a-Al. The two-dimensional mismatch degree was calculated to be only 4.43%and 0.85%, respectively, which can provide a certain amount of nucleation substrate for a-Al in the incubation stage. The interfacial match between the L1_(2)structure of Al_(3)Y and a-Al was calculated using first-principles simulations. The results indicate that Al_(3)Y has a strong bonding effect with a-Al. Nanoscale second phases at grain boundaries can be effective in reducing resistivity due to dislocation motion.Nanoscale second phases with better matching interfaces to the substrate have no positive effect on the scattering motion of electrons.
基金Project supported by National Natural Science Foundation of China(51571103,51501079)China Postdoctoral Science Foundation(2017M623319XB,2018T110999)Yunnan Provincial Department of Education Science Research Fund Project(2018JS033)
文摘The influence of Er_2 O_3 addition on the phase evolution and mechanical properties of sintered(1600 ℃,4 h) ZTA(yttria stabilized zirconia toughened alumina)-TiO_2 composites was investigated. The SEM and XRD results reveal the formation of a new erbium zirconium oxide,Zr_3 Er_4 O_(12),with a granulate morphology when Er_2 O_3 content is higher than 1 wt%. The grain sizes of both Al_2 O_3 and yttria-stabilized zirconia phases decrease with an increase in the Er_2 O_3 content. The relative density, Vickers hardness and fracture toughness of the composites are found to be strongly dependent on their grain sizes, relative densities and the formation of the Zr_3 Er_4 O_(12) secondary phases. The composite with 5 wt% Er_2 O_3 shows the highest relative density(99.93%), Vickers hardness(1752 HV) and fracture toughness(7.92 MPa·m^(1/2)).
基金funding for this research from the National Natural Science Foundation of China(No.50871048)supported by Institute of Advanced Materials Processing,Kunming University of Science and Technology, Kunming,China
文摘Microstructure of the matrix directly influences the performance and the application of metal matrix composites. By using vacuum casting-infiltration method to manufacture casting tungsten carbide particle reinforced composite, the addition of Ni can alter the microstructure of the matrix of composite. High carbon chromium steel was chosen as the substrate. The casting process was achieved at 1580 ℃ with vacuum degree of 0.072-0.078 MPa. Padding of the molten steel in each part of the preform was different, and the solidification of each part of the composite was different, too. Microstructure of the matrix was various in different parts of the composite. The Ni addition had enlarged the austenite zone in matrix, which would improve the corrosion resistance of the composite. The phase identification of the composite was performed by X-ray diffraction technique. The result showed that Fe3W3C was the primary precipitated carbide and its composition had a direct link with the decomposition of the casting tungsten carbide particles. The hardness of the matrix mainly depended on the reinforced carbide, i.e. Fe3W3C.