The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method.During the preparation of the Fe-NC catalyst,th...The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method.During the preparation of the Fe-NC catalyst,the complexation of N elements in urea could anchor Fe,and the formation of C3N4during urea pyrolysis could also prevent migration and aggregation of Fe species,which jointly improve the dispersion and stability of Fe.The FeN4sites and highly dispersed Fe nanoparticles synergistically trigger the dual-site peroxymonosulfate (PMS) activation for highly efficient m-cresol degradation,while the ordered mesoporous structure of the catalyst could improve the mass transfer rate of the catalytic process,which together promote catalytic degradation of m-cresol by PMS activation.Reactive oxygen species (ROS) analytic experiments demonstrate that the system degrades m-cresol by free radical pathway mainly based on SO_(4)^(-)·and·OH,and partially based on·OH as the active components,and a possible PMS activation mechanism by 5Fe-50 for m-cresol degradation was proposed.This study can provide theoretical guidance for the preparation of efficient and stable catalysts for the degradation of organic pollutants by activated PMS.展开更多
The homogeneous/particulate fluidization flow regime is particularly suitable for handling the various gas–solid contact processes encountered in the chemical and energy industry.This work aimed to extend such a regi...The homogeneous/particulate fluidization flow regime is particularly suitable for handling the various gas–solid contact processes encountered in the chemical and energy industry.This work aimed to extend such a regime of Geldart-A particles by exerting the axial uniform and steady magnetic field.Under the action of the magnetic field,the overall homogeneous fluidization regime of Geldart-A magnetizable particles became composed of two parts:inherent homogeneous fluidization and newly-created magnetic stabilization.Since the former remained almost unchanged whereas the latter became broader as the magnetic field intensity increased,the overall homogeneous fluidization regime could be extended remarkably.As for Geldart-A nonmagnetizable particles,certain amount of magnetizable particles had to be premixed to transmit the magnetic stabilization.Among others,the mere addition of magnetizable particles could broaden the homogeneous fluidization regime.The added content of magnetizable particles had an optimal value with smaller/lighter ones working better.The added magnetizable particles might raise the ratio between the interparticle force and the particle gravity.After the magnetic field was exerted,the homogeneous fluidization regime was further expanded due to the formation of magnetic stabilization flow regime.The more the added magnetizable particles,the better the magnetic performance and the broader the overall homogeneous fluidization regime.Smaller/lighter magnetizable particles were preferred to maximize the magnetic performance and extend the overall homogeneous fluidization regime.This phenomenon could be ascribed to that the added magnetizable particles themselves became more Geldart-A than-B type as their density or size decreased.展开更多
The characterization of a particle ensemble(rather than a single particle) is of paramount significance to various particle technologies and has long been a fundamental subject in the fluidization realm. However, many...The characterization of a particle ensemble(rather than a single particle) is of paramount significance to various particle technologies and has long been a fundamental subject in the fluidization realm. However, many of such bulk characterizations as loosely-packed density(ρbl), minimum fluidization velocity(Umf), sphericity(φ), discharge rate through orifice(q), angle of repose(β), and segregation index(S),were found to be poorly reproducible, making the reported results seldom comparable. Since these bulk characterizations started from the packed state of particles, such poor reproducibility was ascribed to the polymorphism of packed particles in this work. We observed that in the fluidized bed, the settled/packed state of particles varied monotonously with the settling rate(a) from complete fluidization to zero. This phenomenon confirmed the polymorphic characteristic of packed particles and further enabled us to systematically disclose/clarify its influences on the aforementioned bulk characterizations. Such influences could be comprehensively and intuitively reflected by the impacts induced by a. With the decrease of a, ρbl, φ and q first increased, then decreased, and finally leveled off while Umfand β showed an opposite trend. On the other hand, S first increased and then remained invariant. As per these findings and definitions of these bulk characterizations, benchmarks were indicated to unify the selection of settled state among future scholars and further make their outcomes become fairly comparable. Additionally, most packed states of the particle ensemble were proved to be metastable with their formation and behavior being identical to those of the amorphous state.展开更多
For a fully baffled tank stirred by a Rushton turbine (RT), the flow pattern will change from double- to single-loop as the off bottom clearance (C) of the RT decreases from one third of the tank diameter. Such a flow...For a fully baffled tank stirred by a Rushton turbine (RT), the flow pattern will change from double- to single-loop as the off bottom clearance (C) of the RT decreases from one third of the tank diameter. Such a flow pattern transition as well as its influence on the macro mixing efficiency was investigated via CFD simulation. The transient sliding mesh approach coupled with the standard k-s turbulence model could correctly and efficiently reproduce the reported critical C range where the flow pattern changes. Simulation results indicated that such a critical C range varied hardly with the impeller rotation speed but decreased significantly with increasing impeller diameter. Small RTs are preferable to generating the single-loop flow pattern. A mechanism of the flow pattern transition was further proposed to explain these phe no mena. The discharge stream from the RT deviates down wards from the horizontal direction for small C values;if it meets the tank wall first, the double-loop will form;if it hits the tank bottom first, the single-loop will form. With the flow pattern transition, the mixing time decreased by about 35% at the same power input (P), indicating that the single-loop flow pattern was more efficient than the double-loop to enhance the macro mixing in the tank. A comparison was further made between the single-loop RT and pitched blade turbine (PBT, 45°) from macro mixing perspective. The single-loop RT was found to be less efficient than the PBT and usually required 60% more time to achieve the same level of macro mixing at the same P.展开更多
For the magnetized fluidized bed(MFB)with the binary mixture of Geldart-B magnetizable and nonmagnetizable particles,the magnetically induced segregation between these two kinds of particles occurs at high magnetic fi...For the magnetized fluidized bed(MFB)with the binary mixture of Geldart-B magnetizable and nonmagnetizable particles,the magnetically induced segregation between these two kinds of particles occurs at high magnetic field intensities(H),leading to the deterioration of the fluidization quality.The critical intensity(H_(ms))above which such segregation commences varies with the gas velocity(U_g).This work focuses on establishing a segregation model to theoretically derive the H_(ms)–U_g relationship.In a magnetic field,the magnetizable particles form agglomerates.The magnetically induced segregation in essence refers to the size segregation of the binary mixture of agglomerates and nonmagnetizable particles.Consequently,the segregation model was established in two steps:first,the size of agglomerates(d_A)was calculated by the force balance model;then,the H_(ms)–U_g relationship was obtained by substituting the expression of d_Ainto the basic size segregation model for binary mixtures.As per the force balance model,the cohesive and collision forces were 1_2 orders of magnitude greater than the other forces exerted on the agglomerates.Therefore,the balance between these two forces largely determined d_A.The calculated d_A increased with increasing H and decreasing U_g,agreeing qualitatively with the experimental observation.The calculated H_(ms)–U_ g relationship agreed reasonably with the experimental data,indicating that the present segregation model could predict well the segregation behavior in the MFB with the binary mixture.展开更多
Catalytic wet air oxidation(CWAO) can degrade some refractory pollutants at a low cost to improve the biodegradability of wastewater. However, in the presence of high temperature and high pressure and strong oxidizing...Catalytic wet air oxidation(CWAO) can degrade some refractory pollutants at a low cost to improve the biodegradability of wastewater. However, in the presence of high temperature and high pressure and strong oxidizing free radicals, the stability of catalysts is often insufficient, which has become a bottleneck in the application of CWAO. In this paper, a copper-based catalyst with excellent hydrothermal stability was designed and prepared. TiO_(2) with excellent stability was used as the carrier to ensure the longterm anchoring of copper and reduce the leaching of the catalyst. The one pot sol–gel method was used to ensure the super dispersion and uniform distribution of copper nanoparticles on the carrier, so as to ensure that more active centers could be retained in a longer period. Experiments show that the catalyst prepared by this method has good stability and catalytic activity, and the catalytic effect is not significantly reduced after 10 cycles of use. The oxidation degradation experiment of m-cresol with the strongest biological toxicity and the most difficult to degrade in coal chemical wastewater was carried out with this catalyst. The results showed that under the conditions of 140℃, 2 MPa and 2 h, m-cresol with a concentration of up to 1000 mg·L^(-1) could be completely degraded, and the COD removal rate could reach 79.15%. The biological toxicity of wastewater was significantly reduced. The development of the catalyst system has greatly improved the feasibility of CWAO in the treatment of refractory wastewater such as coal chemical wastewater.展开更多
Molecular imprinted nanoparticles(MINPs) can memorize the shape and functional group positions complementary to template, which account for the large drug loading capacity and slow drug release behavior as drug carrie...Molecular imprinted nanoparticles(MINPs) can memorize the shape and functional group positions complementary to template, which account for the large drug loading capacity and slow drug release behavior as drug carriers. We synthesized MINPs via precipitation polymerization with vinblastine(VBL) as a model drug, and investigated the drug loading,releasing property in vitro and bio-distribution in vivo. The obtained MINPs, from 300 to 450 nm,had smooth surface and favorable dispersibility. The entrapment efficacy and drug loading capacity of VBL loaded MINPs(MINPs-VBL) were 83.25% and 8.72% respectively. In PBS(pH 7.4),MINPs-VBL showed sustained release behavior. The cumulative release percentage reached about 70% during 216 h and no burst release was observed. The releasing behavior of MINPsVBL in vitro conformed to the first-order kinetics model. MINPs-VBL and commercially available vinblastine sulfate injection(VBL injection) were injected via tail vein of SD rats respectively to investigate the bio-distribution. MINPs-VBL group showed higher concentration of VBL in tissues and serum than VBL injection group after 60 min, and the drug level in liver was the highest. MINPs-VBL exhibited liver targeting trend to some extent, which was based on the evaluation of drug targeting index(DTI) and drug selecting index(DSI).展开更多
Synthetic polymer hydrogel nanoparticles(NPs)were developed to function as abiotic affinity reagents for fibrinogen.These NPs were made using both temperature-sensitive N-isopropyl acrylamide(NIPAm)and L-amino acid mo...Synthetic polymer hydrogel nanoparticles(NPs)were developed to function as abiotic affinity reagents for fibrinogen.These NPs were made using both temperature-sensitive N-isopropyl acrylamide(NIPAm)and L-amino acid monomers.Five kinds of L-amino acids were acryloylated to obtain functional monomers:L-phenylalanine(Phe)and L-leucine(Leu)with hydrophobic side chains,L-glutamic acid(Glu)with negative charges,and L-lysine(Lys)and L-arginine(Arg)with positive charges.After incubating the NPs with fibrinogen,g-globulin,and human serum albumin(HSA)respectively,the NPs that incorporated Nacryloyl-Arg monomers(AArg@NPs)showed the strongest and most specific binding affinity to fibrinogen,when compared with g-globulin and HSA.Additionally,the fibrinogen-AArg binding model had the best docking scores,and this may be due to the interaction of positively charged AArg@NPs and the negatively charged fibrinogen D domain and the hydrophobic interaction between them.The specific adsorption of AArg@NPs to fibrinogen was also confirmed by the immunoprecipitation assay,as the AArg@NPs selectively trapped the fibrinogen from a human plasma protein mixture.AArg@NPs had a strong selectivity for,and specificity to,fibrinogen and may be developed as a potential human fibrinogen-specific affinity reagent.展开更多
This study investigated the performance of magnetic fields in reducing gas back-mixing in bubbling fluidized beds with Geldart-B magnetizable particles.The Peclet number(Pe)and axial dispersion coefficient(Da,g)were d...This study investigated the performance of magnetic fields in reducing gas back-mixing in bubbling fluidized beds with Geldart-B magnetizable particles.The Peclet number(Pe)and axial dispersion coefficient(Da,g)were determined using the one-dimensional dispersion model.A weak magnetic field reduced gas back-mixing to a certain extent,while a moderate field resulted in minimal decrease.The performance of a strong magnetic field varied significantly depending on the operation mode.Under the magnetization-FIRST operation mode,gas back-mixing was significantly reduced.The corresponding Pe and Da,g were calculated as∼76 and∼3.6×10^(−4) m^(2)/s,indicating that the gas flow approached the ideal plug-flow manner.However,when the magnetization-LAST operation mode was used,the strong magnetic field failed to mitigate gas back-mixing.Therefore,the performance of magnetic fields in reducing gas back-mixing depended not only on their intensity but also on their application sequence to the gas flow field.展开更多
The magnetic stabilization flow regime could also be created forGeldart-Bnonmagnetizable particles pro-vided some magnetizable particles are introduced and the magnetic field is applied.This study aimed toexplore the ...The magnetic stabilization flow regime could also be created forGeldart-Bnonmagnetizable particles pro-vided some magnetizable particles are introduced and the magnetic field is applied.This study aimed toexplore the size(d_(pM))and density(ρ_(pM))effects of magnetizable particles on its operating range.The upperlimit(Umb;)could not be determined from the △P_(b)-U_(g)↓curve but could from analyzing the variation of △P_(b)-fluctuation with increasing U_(g).Due to the variation of U_(mfH)(lower limit)with d_(pM) and ppw,both U_(mbH)-U_(mfH) and(U_(mbH)-U_(mfH))/U_(mfH) were used to quantify the operating range of magnetic stabilization.U_(mbH)-U_(mfH) varied hardly with ρ_(pM) but increased significantly with decreasing ρ_(pM).(U_(mbH)-U_(mfH))/U_(mfH)increased as d_(pM) or ρ_(pM) decreased.lt was more difficult for the nonmagnetizable particles to escape fromthe network formed by the smaller/lighter magnetizable particles.For the same magnitude of change,dp had a stronger effect than ρ_(pM) on(U_(mbH)-U_(mfH))/U_(mfH).Neither U_(mbH)-U_(mfH) nor(U_(mbH)-U_(mfH):)/Uma variedmonotonously with the minimum fluidization velocity of the magnetizable particles,indicating that nostraightforward criterion for matching the magnetizable particles to the given nonmagnetizable particlescould be established based on their minimum fluidization velocities to maximize the operating range ofmagnetic stabilization.展开更多
This work focuses on the hydrodynamic behavior of admixtures of Geldart-B magnetizable and non- magnetizable particles in a magnetized fluidized bed. The applied magnetic field was axial, uniform, and steady. In opera...This work focuses on the hydrodynamic behavior of admixtures of Geldart-B magnetizable and non- magnetizable particles in a magnetized fluidized bed. The applied magnetic field was axial, uniform, and steady. In operating the beds, the magnetization-LAST mode was adopted under which four distinct flow regimes exist: fixed, magnetized-bubbling, partial segregation-bubbling, and total segregation-bubbling, The operational phase diagram was drawn to display the transitions between flow regimes in an intuitive manner. Only in the magnetized-bubbling regime could the magnetic field reduce the bubble size and improve fluidization quality. In the segregation-bubbling regimes, fluidization quality deteriorated as segregation developed. The segregation of the binary mixture was quantitatively studied by observing pressure drops in the local bed. Reasons for the improvement in fluidization quality as well as the occur- rence of segregation were analyzed. Furthermore. the flow regime transition under magnetization-LAST operation mode was different from that under magnetization-FIRST mode. The magnetically stabilized bed (MSB) flow regime, which could be easily created under magnetization-FIRST mode, could no longer be achieved under magnetization-LAST mode. With the admixture, the MSB was proved to be a metastable equilibrium state. Under the magnetization-LAST mode, the admixture bed reached directly the stable equilibrium state-bubbling with segregation.展开更多
The magnetized fluidized bed(MFB)with Geldart-B particles exhibits many distinct flow regimes depend-ing on the magnetic field intensity(H)and gas velocity(U_(g)).The identification of these regimes was reviewed for t...The magnetized fluidized bed(MFB)with Geldart-B particles exhibits many distinct flow regimes depend-ing on the magnetic field intensity(H)and gas velocity(U_(g)).The identification of these regimes was reviewed for the MFB with magnetizable particles and that with binary admixture of magnetizable and nonmagnetizable particles.Meanwhile,methods for determining the boundaries between two adjacent flow regimes were clarified.The MFB state was found to depend not only on H and Ug but also on their application sequence(i.e.,operation mode)within certain operating zones.The dependence feature arose from that the MFB therein could have different equilibrium states for the same combination of H and Ug.Furthermore,such a polymorphic characteristic of the MFB was revealed to result from the internal friction among the particles that were in unfluidized/packed state.Many of the MFB states were demon-strated to be in metastable equilibrium.Nevertheless,they differed significantly from the metastates well-known in the discipline of physical chemistry,such as supercooling and superheated.In fact,they belonged to the amorphous/glass state.This review will deepen our hydrodynamic understanding of the MFB and further promote its commercial application in the chemical and biochemical industries.展开更多
基金gratefully acknowledge the financial support of the National Natural Science Foundation of China(22108145 and 21978143)the Shandong Province Natural Science Foundation(ZR2020QB189)+1 种基金State Key Laboratory of Heavy Oil Processing(SKLHOP202203008)the Talent Foundation funded by Province and Ministry Co-construction Collaborative Innovation Center of Eco-chemical Engineering(STHGYX2201).
文摘The novel Fe-N co-doped ordered mesoporous carbon with high catalytic activity in m-cresol removal was prepared by urea-assisted impregnation and simple pyrolysis method.During the preparation of the Fe-NC catalyst,the complexation of N elements in urea could anchor Fe,and the formation of C3N4during urea pyrolysis could also prevent migration and aggregation of Fe species,which jointly improve the dispersion and stability of Fe.The FeN4sites and highly dispersed Fe nanoparticles synergistically trigger the dual-site peroxymonosulfate (PMS) activation for highly efficient m-cresol degradation,while the ordered mesoporous structure of the catalyst could improve the mass transfer rate of the catalytic process,which together promote catalytic degradation of m-cresol by PMS activation.Reactive oxygen species (ROS) analytic experiments demonstrate that the system degrades m-cresol by free radical pathway mainly based on SO_(4)^(-)·and·OH,and partially based on·OH as the active components,and a possible PMS activation mechanism by 5Fe-50 for m-cresol degradation was proposed.This study can provide theoretical guidance for the preparation of efficient and stable catalysts for the degradation of organic pollutants by activated PMS.
基金supported by Shandong Provincial Natural Science Foundation (ZR2023MB038)National Natural Science Foundation of China (21808232 and 21978143)Financial support from the Qingdao University of Science and Technology
文摘The homogeneous/particulate fluidization flow regime is particularly suitable for handling the various gas–solid contact processes encountered in the chemical and energy industry.This work aimed to extend such a regime of Geldart-A particles by exerting the axial uniform and steady magnetic field.Under the action of the magnetic field,the overall homogeneous fluidization regime of Geldart-A magnetizable particles became composed of two parts:inherent homogeneous fluidization and newly-created magnetic stabilization.Since the former remained almost unchanged whereas the latter became broader as the magnetic field intensity increased,the overall homogeneous fluidization regime could be extended remarkably.As for Geldart-A nonmagnetizable particles,certain amount of magnetizable particles had to be premixed to transmit the magnetic stabilization.Among others,the mere addition of magnetizable particles could broaden the homogeneous fluidization regime.The added content of magnetizable particles had an optimal value with smaller/lighter ones working better.The added magnetizable particles might raise the ratio between the interparticle force and the particle gravity.After the magnetic field was exerted,the homogeneous fluidization regime was further expanded due to the formation of magnetic stabilization flow regime.The more the added magnetizable particles,the better the magnetic performance and the broader the overall homogeneous fluidization regime.Smaller/lighter magnetizable particles were preferred to maximize the magnetic performance and extend the overall homogeneous fluidization regime.This phenomenon could be ascribed to that the added magnetizable particles themselves became more Geldart-A than-B type as their density or size decreased.
基金supported by Shandong Provincial Natural Science Foundation(Project ZR2023MB038)Youth Innovation Team Program of Shandong Higher Education Institution(2022KJ156).
文摘The characterization of a particle ensemble(rather than a single particle) is of paramount significance to various particle technologies and has long been a fundamental subject in the fluidization realm. However, many of such bulk characterizations as loosely-packed density(ρbl), minimum fluidization velocity(Umf), sphericity(φ), discharge rate through orifice(q), angle of repose(β), and segregation index(S),were found to be poorly reproducible, making the reported results seldom comparable. Since these bulk characterizations started from the packed state of particles, such poor reproducibility was ascribed to the polymorphism of packed particles in this work. We observed that in the fluidized bed, the settled/packed state of particles varied monotonously with the settling rate(a) from complete fluidization to zero. This phenomenon confirmed the polymorphic characteristic of packed particles and further enabled us to systematically disclose/clarify its influences on the aforementioned bulk characterizations. Such influences could be comprehensively and intuitively reflected by the impacts induced by a. With the decrease of a, ρbl, φ and q first increased, then decreased, and finally leveled off while Umfand β showed an opposite trend. On the other hand, S first increased and then remained invariant. As per these findings and definitions of these bulk characterizations, benchmarks were indicated to unify the selection of settled state among future scholars and further make their outcomes become fairly comparable. Additionally, most packed states of the particle ensemble were proved to be metastable with their formation and behavior being identical to those of the amorphous state.
基金Supported by the National Key Research and Development Program of China(2016YFB0301701)the National Natural Science Foundation of China(91434114+4 种基金21376254)the Instrument Developing Project of the CAS(YZ201641)“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the CAS(XDA21060400)CAS Key Technology Talent Program
文摘For a fully baffled tank stirred by a Rushton turbine (RT), the flow pattern will change from double- to single-loop as the off bottom clearance (C) of the RT decreases from one third of the tank diameter. Such a flow pattern transition as well as its influence on the macro mixing efficiency was investigated via CFD simulation. The transient sliding mesh approach coupled with the standard k-s turbulence model could correctly and efficiently reproduce the reported critical C range where the flow pattern changes. Simulation results indicated that such a critical C range varied hardly with the impeller rotation speed but decreased significantly with increasing impeller diameter. Small RTs are preferable to generating the single-loop flow pattern. A mechanism of the flow pattern transition was further proposed to explain these phe no mena. The discharge stream from the RT deviates down wards from the horizontal direction for small C values;if it meets the tank wall first, the double-loop will form;if it hits the tank bottom first, the single-loop will form. With the flow pattern transition, the mixing time decreased by about 35% at the same power input (P), indicating that the single-loop flow pattern was more efficient than the double-loop to enhance the macro mixing in the tank. A comparison was further made between the single-loop RT and pitched blade turbine (PBT, 45°) from macro mixing perspective. The single-loop RT was found to be less efficient than the PBT and usually required 60% more time to achieve the same level of macro mixing at the same P.
基金Supported by the National Natural Science Foundation of China(21325628)the Major Research Plan of the National Natural Science Foundation of China(91334108)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(YZ201641)
文摘For the magnetized fluidized bed(MFB)with the binary mixture of Geldart-B magnetizable and nonmagnetizable particles,the magnetically induced segregation between these two kinds of particles occurs at high magnetic field intensities(H),leading to the deterioration of the fluidization quality.The critical intensity(H_(ms))above which such segregation commences varies with the gas velocity(U_g).This work focuses on establishing a segregation model to theoretically derive the H_(ms)–U_g relationship.In a magnetic field,the magnetizable particles form agglomerates.The magnetically induced segregation in essence refers to the size segregation of the binary mixture of agglomerates and nonmagnetizable particles.Consequently,the segregation model was established in two steps:first,the size of agglomerates(d_A)was calculated by the force balance model;then,the H_(ms)–U_g relationship was obtained by substituting the expression of d_Ainto the basic size segregation model for binary mixtures.As per the force balance model,the cohesive and collision forces were 1_2 orders of magnitude greater than the other forces exerted on the agglomerates.Therefore,the balance between these two forces largely determined d_A.The calculated d_A increased with increasing H and decreasing U_g,agreeing qualitatively with the experimental observation.The calculated H_(ms)–U_ g relationship agreed reasonably with the experimental data,indicating that the present segregation model could predict well the segregation behavior in the MFB with the binary mixture.
基金support provided by the National Natural Science Foundation of China (21978143 and 21878164)。
文摘Catalytic wet air oxidation(CWAO) can degrade some refractory pollutants at a low cost to improve the biodegradability of wastewater. However, in the presence of high temperature and high pressure and strong oxidizing free radicals, the stability of catalysts is often insufficient, which has become a bottleneck in the application of CWAO. In this paper, a copper-based catalyst with excellent hydrothermal stability was designed and prepared. TiO_(2) with excellent stability was used as the carrier to ensure the longterm anchoring of copper and reduce the leaching of the catalyst. The one pot sol–gel method was used to ensure the super dispersion and uniform distribution of copper nanoparticles on the carrier, so as to ensure that more active centers could be retained in a longer period. Experiments show that the catalyst prepared by this method has good stability and catalytic activity, and the catalytic effect is not significantly reduced after 10 cycles of use. The oxidation degradation experiment of m-cresol with the strongest biological toxicity and the most difficult to degrade in coal chemical wastewater was carried out with this catalyst. The results showed that under the conditions of 140℃, 2 MPa and 2 h, m-cresol with a concentration of up to 1000 mg·L^(-1) could be completely degraded, and the COD removal rate could reach 79.15%. The biological toxicity of wastewater was significantly reduced. The development of the catalyst system has greatly improved the feasibility of CWAO in the treatment of refractory wastewater such as coal chemical wastewater.
基金supported by the National Natural Science Foundation of China (grant number: 81173566)
文摘Molecular imprinted nanoparticles(MINPs) can memorize the shape and functional group positions complementary to template, which account for the large drug loading capacity and slow drug release behavior as drug carriers. We synthesized MINPs via precipitation polymerization with vinblastine(VBL) as a model drug, and investigated the drug loading,releasing property in vitro and bio-distribution in vivo. The obtained MINPs, from 300 to 450 nm,had smooth surface and favorable dispersibility. The entrapment efficacy and drug loading capacity of VBL loaded MINPs(MINPs-VBL) were 83.25% and 8.72% respectively. In PBS(pH 7.4),MINPs-VBL showed sustained release behavior. The cumulative release percentage reached about 70% during 216 h and no burst release was observed. The releasing behavior of MINPsVBL in vitro conformed to the first-order kinetics model. MINPs-VBL and commercially available vinblastine sulfate injection(VBL injection) were injected via tail vein of SD rats respectively to investigate the bio-distribution. MINPs-VBL group showed higher concentration of VBL in tissues and serum than VBL injection group after 60 min, and the drug level in liver was the highest. MINPs-VBL exhibited liver targeting trend to some extent, which was based on the evaluation of drug targeting index(DTI) and drug selecting index(DSI).
基金This work was supported by the Natural Science Foundation of Guangdong Province,China(Grant No.:2017A030313775)the Science and Technology Planning Project of Guangdong Province,China(Grant No.:2016A010103016)the Science and Technology Planning Project of Guangzhou City of Guangdong Province,China(Grant No.:201607010148).
文摘Synthetic polymer hydrogel nanoparticles(NPs)were developed to function as abiotic affinity reagents for fibrinogen.These NPs were made using both temperature-sensitive N-isopropyl acrylamide(NIPAm)and L-amino acid monomers.Five kinds of L-amino acids were acryloylated to obtain functional monomers:L-phenylalanine(Phe)and L-leucine(Leu)with hydrophobic side chains,L-glutamic acid(Glu)with negative charges,and L-lysine(Lys)and L-arginine(Arg)with positive charges.After incubating the NPs with fibrinogen,g-globulin,and human serum albumin(HSA)respectively,the NPs that incorporated Nacryloyl-Arg monomers(AArg@NPs)showed the strongest and most specific binding affinity to fibrinogen,when compared with g-globulin and HSA.Additionally,the fibrinogen-AArg binding model had the best docking scores,and this may be due to the interaction of positively charged AArg@NPs and the negatively charged fibrinogen D domain and the hydrophobic interaction between them.The specific adsorption of AArg@NPs to fibrinogen was also confirmed by the immunoprecipitation assay,as the AArg@NPs selectively trapped the fibrinogen from a human plasma protein mixture.AArg@NPs had a strong selectivity for,and specificity to,fibrinogen and may be developed as a potential human fibrinogen-specific affinity reagent.
基金supported by Shandong Provincial Natural Science Foundation (grant No.ZR2023MB038)Youth Innovation Team Program of Shandong Higher Education Institution (grant No.2022KJ156).
文摘This study investigated the performance of magnetic fields in reducing gas back-mixing in bubbling fluidized beds with Geldart-B magnetizable particles.The Peclet number(Pe)and axial dispersion coefficient(Da,g)were determined using the one-dimensional dispersion model.A weak magnetic field reduced gas back-mixing to a certain extent,while a moderate field resulted in minimal decrease.The performance of a strong magnetic field varied significantly depending on the operation mode.Under the magnetization-FIRST operation mode,gas back-mixing was significantly reduced.The corresponding Pe and Da,g were calculated as∼76 and∼3.6×10^(−4) m^(2)/s,indicating that the gas flow approached the ideal plug-flow manner.However,when the magnetization-LAST operation mode was used,the strong magnetic field failed to mitigate gas back-mixing.Therefore,the performance of magnetic fields in reducing gas back-mixing depended not only on their intensity but also on their application sequence to the gas flow field.
基金This work was supported by the National Natural Science Foundation of China(No.21808232).
文摘The magnetic stabilization flow regime could also be created forGeldart-Bnonmagnetizable particles pro-vided some magnetizable particles are introduced and the magnetic field is applied.This study aimed toexplore the size(d_(pM))and density(ρ_(pM))effects of magnetizable particles on its operating range.The upperlimit(Umb;)could not be determined from the △P_(b)-U_(g)↓curve but could from analyzing the variation of △P_(b)-fluctuation with increasing U_(g).Due to the variation of U_(mfH)(lower limit)with d_(pM) and ppw,both U_(mbH)-U_(mfH) and(U_(mbH)-U_(mfH))/U_(mfH) were used to quantify the operating range of magnetic stabilization.U_(mbH)-U_(mfH) varied hardly with ρ_(pM) but increased significantly with decreasing ρ_(pM).(U_(mbH)-U_(mfH))/U_(mfH)increased as d_(pM) or ρ_(pM) decreased.lt was more difficult for the nonmagnetizable particles to escape fromthe network formed by the smaller/lighter magnetizable particles.For the same magnitude of change,dp had a stronger effect than ρ_(pM) on(U_(mbH)-U_(mfH))/U_(mfH).Neither U_(mbH)-U_(mfH) nor(U_(mbH)-U_(mfH):)/Uma variedmonotonously with the minimum fluidization velocity of the magnetizable particles,indicating that nostraightforward criterion for matching the magnetizable particles to the given nonmagnetizable particlescould be established based on their minimum fluidization velocities to maximize the operating range ofmagnetic stabilization.
文摘This work focuses on the hydrodynamic behavior of admixtures of Geldart-B magnetizable and non- magnetizable particles in a magnetized fluidized bed. The applied magnetic field was axial, uniform, and steady. In operating the beds, the magnetization-LAST mode was adopted under which four distinct flow regimes exist: fixed, magnetized-bubbling, partial segregation-bubbling, and total segregation-bubbling, The operational phase diagram was drawn to display the transitions between flow regimes in an intuitive manner. Only in the magnetized-bubbling regime could the magnetic field reduce the bubble size and improve fluidization quality. In the segregation-bubbling regimes, fluidization quality deteriorated as segregation developed. The segregation of the binary mixture was quantitatively studied by observing pressure drops in the local bed. Reasons for the improvement in fluidization quality as well as the occur- rence of segregation were analyzed. Furthermore. the flow regime transition under magnetization-LAST operation mode was different from that under magnetization-FIRST mode. The magnetically stabilized bed (MSB) flow regime, which could be easily created under magnetization-FIRST mode, could no longer be achieved under magnetization-LAST mode. With the admixture, the MSB was proved to be a metastable equilibrium state. Under the magnetization-LAST mode, the admixture bed reached directly the stable equilibrium state-bubbling with segregation.
基金supported by the National Natural Science Foundation of China(grant No.21808232).
文摘The magnetized fluidized bed(MFB)with Geldart-B particles exhibits many distinct flow regimes depend-ing on the magnetic field intensity(H)and gas velocity(U_(g)).The identification of these regimes was reviewed for the MFB with magnetizable particles and that with binary admixture of magnetizable and nonmagnetizable particles.Meanwhile,methods for determining the boundaries between two adjacent flow regimes were clarified.The MFB state was found to depend not only on H and Ug but also on their application sequence(i.e.,operation mode)within certain operating zones.The dependence feature arose from that the MFB therein could have different equilibrium states for the same combination of H and Ug.Furthermore,such a polymorphic characteristic of the MFB was revealed to result from the internal friction among the particles that were in unfluidized/packed state.Many of the MFB states were demon-strated to be in metastable equilibrium.Nevertheless,they differed significantly from the metastates well-known in the discipline of physical chemistry,such as supercooling and superheated.In fact,they belonged to the amorphous/glass state.This review will deepen our hydrodynamic understanding of the MFB and further promote its commercial application in the chemical and biochemical industries.