Resonant magnetic perturbations(RMPs)with high toroidal mode number n are considered for controlling edge-localized modes(ELMs)and divertor heat flux in future ITER H-mode operations.In this paper,characteristics of d...Resonant magnetic perturbations(RMPs)with high toroidal mode number n are considered for controlling edge-localized modes(ELMs)and divertor heat flux in future ITER H-mode operations.In this paper,characteristics of divertor heat flux under high-nRMPs(n=3 and 4)in H-mode plasma are investigated using newly upgraded infrared thermography diagnostic in EAST.Additional splitting strike point(SSP)accompanying with ELM suppression is observed under both RMPs with n=3 and n=4,the SSP in heat flux profile agrees qualitatively with the modeled magnetic footprint.Although RMPs suppress ELMs,they increase the stationary heat flux during ELM suppression.The dependence of heat flux on q_(95)during ELM suppression is preliminarily investigated,and further splitting in the original strike point is observed at q 495=during ELM suppression.In terms of ELM pulses,the presence of RMPs shows little influence on transient heat flux distribution.展开更多
Suppression and mitigation of a high-frequency Alfvén-like mode(HFAM)between type-I edge localized modes(ELMs)during ELM mitigation by resonant magnetic perturbation(RMP)is observed for the first time in the EAST...Suppression and mitigation of a high-frequency Alfvén-like mode(HFAM)between type-I edge localized modes(ELMs)during ELM mitigation by resonant magnetic perturbation(RMP)is observed for the first time in the EAST tokamak.This mode is located near the edge pedestal region.The modeling result of the Alfvén continuum shows that the HFAM is located near the elipical Alfvén eigenmode(EAE)gap.During the application of n=1 RMP for ELM mitigation,the HFAM can be fully suppressed when the RMP amplitude exceeds a threshold,below which the HFAM is mitigated.The suppression is caused by a reduction of pedestal height induced by RMP.In the case using n=3 RMP,the mode is localized toroidally at specific phase depending on the phase of applied RMP,i.e.locked in the three-dimensional equilibrium formed by RMP.The dominant toroidal mode number of HFAM is around n=-6 and it reduces to-3 during the application of n=3 RMP,which indicates the existence of possible nonlinear coupling between the HFAM and RMP.Here the negative mode number denotes that the mode rotates in electron diamagnetic drift direction.The observation reported here improves the understanding of pedestal dynamics and its stability in RMP ELM control.展开更多
In arid and semi-arid sand dune ecosystems,belowground bud bank plays an important role in population regeneration and vegetation restoration.However,the responses of belowground bud bank size and composition to sand ...In arid and semi-arid sand dune ecosystems,belowground bud bank plays an important role in population regeneration and vegetation restoration.However,the responses of belowground bud bank size and composition to sand burial and its induced changes in soil environmental factors have been rarely studied.In arid sand dunes of Northwestern China,we investigated belowground bud bank size and composition of the typical rhizomatous psammophyte Psammochloa villosa as well as three key soil environmental factors(soil moisture,total carbon and total nitrogen)under different depths of sand burial.Total buds and rhizome buds increased significantly with increasing burial depth,whereas tiller buds first increased and then decreased,with a peak value at the depth of 20-30 cm.Soil moisture increased significantly with sand burial depth,and was positively correlated with the number of all buds and rhizome buds.Soil total carbon concentration first increased and then decreased with sand burial depth,and total nitrogen concentration was significantly lower under deep sand burial than those at shallow depths,and only the number of tiller buds was positively correlated with soil total nitrogen concentration.These results indicate that soil moisture rather than soil nutrient might regulate the belowground bud bank of P.villosa,and that clonal psammophytes could regulate their belowground bud bank in response to sand burial and the most important environmental stress(i.e.,soil moisture).These responses,as the key adaptive strategy,may ensure clonal plant population regeneration and vegetation restoration in arid sand dunes.展开更多
Human activities and industrialization have significantly increased soil nutrients,such as nitrogen(N)and phos-phorus(P),profoundly impacting the composition and structure of plant community,as well as the ecosystem fu...Human activities and industrialization have significantly increased soil nutrients,such as nitrogen(N)and phos-phorus(P),profoundly impacting the composition and structure of plant community,as well as the ecosystem functions,especially in nutrient-limited ecosystems.However,as the key propagule pool of perennial grasslands,how belowground bud bank and its relationship with aboveground vegetation respond to short-term changes in soil nutrients was still unclear.In this study,we conducted a short-term(2021–2022)soil fertilization experiment with N addition(10 g N m^(-2) yr^(-1))and P addition(5 g N m^(-2) yr^(-1))in the meadow steppe of Inner Mongolia,China,to explore the responses of belowground bud bank,aboveground shoot population and their relationships(represented by the ratio of bud to shoot density-meristem limitation index(MLI))for the whole community and three plant functional groups(perennial rhizomatous grasses-PR,perennial bunchgrasses-PB,and perennial forbs-PF)to nutrient addition.The short-term nutrient addition had no significant influences on belowground bud density,aboveground shoot density,and MLI of the whole plant community.Plant functional groups showed different responses to soil fertilization.Specifically,N addition significantly increased the bud density and shoot density of PR,especially in combination with P addition.N addition reduced the shoot density of PF but had no influence on its bud density and MLI.Nutrient addition had significant effects on the three indicators of PB.Our study indicates that the belowground bud bank and its relationship with aboveground vegetation in temperate meadow steppe are insensitive to short-term soil fertilization,but plant functional groups exhibit specific responses in terms of population regeneration,which implies that plant community composition and ecosystem functions will be changed under the ongoing global change.展开更多
Ultrafine nano-scale Cu2Sb alloy confined in a three-dimensional porous carbon was synthesized using NaCl template-assisted vacuum freeze-drying followed by high-temperature sintering and was evaluated as an anode for...Ultrafine nano-scale Cu2Sb alloy confined in a three-dimensional porous carbon was synthesized using NaCl template-assisted vacuum freeze-drying followed by high-temperature sintering and was evaluated as an anode for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).The alloy exerts excellent cycling durability(the capacity can be maintained at 328.3 mA·h·g^(-1) after 100 cycles for SIBs and 260 mA·h·g^(-1) for PIBs)and rate capability(199 mA·h·g^(-1) at 5 A·g^(-1) for SIBs and 148 mA·h·g^(-1) at 5 A·g^(-1) for PIBs)because of the smooth electron transport path,fast Na/K ion diffusion rate,and restricted volume changes from the synergistic effect of three-dimensional porous carbon networks and the ultrafine bimetallic nanoalloy.This study provides an ingenious design route and a simple preparation method toward exploring a high-property electrode for K-ion and Na-ion batteries,and it also introduces broad application prospects for other electrochemical applications.展开更多
In order to meet the training needs of Partial Discharge (PD) detection personnel, a PD detection training simulator is developed. The composition of the system and the functions of the modules are described, then the...In order to meet the training needs of Partial Discharge (PD) detection personnel, a PD detection training simulator is developed. The composition of the system and the functions of the modules are described, then the three-dimensional graphic engine based on Open Scene Graph (OSG) and the way of scene organization based on hierarchical tree are introduced, moreover, the methods of fault simulation and detection instrument simulation based on algorithm component library are presented. Application shows that the system can provide various detection schemes, and it is an ideal training tool for the detection personnel.展开更多
Mesoporous TiO2 ceramic films have been prepared upon the Ti alloy substrate by the micro-arc oxidation (MAO) technology. To enhance the photo-catalytic property of the films, Eu2O3 particles were added into the elect...Mesoporous TiO2 ceramic films have been prepared upon the Ti alloy substrate by the micro-arc oxidation (MAO) technology. To enhance the photo-catalytic property of the films, Eu2O3 particles were added into the electrolyte solution of Na2CO3/Na2SiO3. Scanning electron microscope (SEM), energy dispersive (EDS), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) are employed to characterize the modified films. Diffuse reflectance spectra (DRS) test, photo-generated current test and photo decomposition test are applied to evaluate the photo-catalytic property of the modified films. The results show that Eu2O3 transformed into one-dimensional (1-D) nano-wires embedded within the composite film, and the film has high photo-catalytic property.展开更多
Obtaining timely and accurate data on the spatiotemporal dynamics of electric power consumption(EPC)is crucial for the effective utilization of electric power in China.The Defense Meteorological Satellite Program’s O...Obtaining timely and accurate data on the spatiotemporal dynamics of electric power consumption(EPC)is crucial for the effective utilization of electric power in China.The Defense Meteorological Satellite Program’s Operational Linescan System(DMSP/OLS)nighttime stable light(NSL)data have good potential for estimating EPC effectively at large scales.However,saturated lighted pixels contained within the NSL data limit the accuracy of EPC estimation.We developed a new method to correct the saturated lighted pixels,using the SPOT VEGETATION(SPOT/VGT)10-day synthesis product(S10)normalized differ-ence vegetation index(NDVI)data and then modeled the spatiotemporal dynamics of EPC in China' Mainland from 2000 to 2008.The results demon-strated the reliability of our approach with an average Rvalue of 0.93(P<0.001)and an average relative error of-28.92%.EPC in China' Mainland showed an average annual growth rate of 13.46% during the study period from 1198.23 billion kWh in 2000 to 3290.51 billion kWh in 2008.EPC in China' Mainland also showed clear regional variation.Northern coastal China and eastern coastal China consumed 37.61%of the total EPC in China' Mainland,with only 25.96% of the population and 6.11% of the area.展开更多
High entropy oxides(HEOs),as a new type of single-phase multielement solid solution materials,have shown many attractive features and promising application prospect in the energy storage fleld.Herein,six-element HEOs(...High entropy oxides(HEOs),as a new type of single-phase multielement solid solution materials,have shown many attractive features and promising application prospect in the energy storage fleld.Herein,six-element HEOs(CoNiZnFeMnLi)_(3)O_(4) and(CoNiZnCrMnLi)_(3)O_(4) with spinel structure are successfully prepared by con-ventional solid-phase method and present outstanding lithium storage performances due to the synergy effect of various electrochemically active elements and the entropy stabilization.By contrast,(CoNiZnFeMnLi)_(3)O_(4) delivers higher initial discharge specific capacity of 1104.3 mAh·g^(−1),better cycle stability(84%capacity retention after 100 cycles at 100 mA·g^(−1)) and rate performance(293 mAh·g^(−1)at 2000 mA·g^(−1))in the half-cell.Moreover,the full-cell assembled with(CoNiZnFeMnLi)_(3)O_(4) and LiCoO_(2)provides a reversible specific capacity of 260.2 mAh·g^(−1)after 100 cycles at 500 mA·g^(−1).Ex situ X-ray diffraction reveals the electrochemical reaction mechanism of HEOs(CoNiZnFeMnLi)_(3)O_(4),and the amorphous phase and the large amount of oxygen vacancies were obtained after the initial discharge process,which are responsible for the excellent cycle and rate performance.This research puts forward fresh insights for the development of advanced energy storage materials for high-performance batteries.展开更多
Antimony-based materials with high capacities and moderate potentials are promising anodes for lithium-/-sodium-ion batteries.However,their tremendous volume expansion and inferior conductivity lead to poor structural...Antimony-based materials with high capacities and moderate potentials are promising anodes for lithium-/-sodium-ion batteries.However,their tremendous volume expansion and inferior conductivity lead to poor structural stability and sluggish reaction kinetics.Herein,a doubleconfined nanoheterostructure Sb/Sb_(2)S_(3)@Ti_(3)C_(2)T_(x)@C has been fabricated through a solvothermal method followed by low-temperature heat treatment.The dual protection of“MXene”and“carbon”can better accommodate the volume expansion of Sb/Sb_(2)S_(3).The strong covalent bond(Ti-S,Ti-O-Sb,C-O-Sb)can firmly integrate Sb-based material with Ti_(3)C_(2)T_(x)and carbon,which significantly improves the structure stability.In addition,the carbon layer can restrain the oxidation of MXenes,and the nano-Sb/Sb_(2)S_(3)can facilitate electron/ion transport and suppress the restacking of MXenes.The heterogeneous interface between Sb and Sb_(2)S_(3)can further promote interfacial charge transfer.The MXene-Sb/Sb_(2)S_(3)@C-1 with the optimal Sb content shows high specific capacities,comparable rate properties and ultra-stable cycling performances(250 m Ah·g^(-1)after 2500 cycles at 1 A·g^(-1)for sodium-ion batteries).Ex situ X-ray diffractometer(XRD)test reveals the storage mechanism including the conversion and alloying process of MXene-Sb/Sb_(2)S_(3)@C-1.Cyclic voltammetry(CV)test results demonstrate that the pseudocapacitance behavior is dominant in MXene-Sb/Sb_(2)S_(3)@C-1,especially at large current.This design paves the way for exploring high-performance alloy-based/conversion-type anode for energy storage devices.展开更多
Strontium-90,a highly radioactive isotope,accumulates within the food chain and skeletal structure,posing significant risks to human health.There is a critical need for a sensitive detection strategy for Strontium-90 ...Strontium-90,a highly radioactive isotope,accumulates within the food chain and skeletal structure,posing significant risks to human health.There is a critical need for a sensitive detection strategy for Strontium-90 in complex environmental samples.Here,solid-state nanochannels,modified with metal-organic frameworks(MOF)and specific aptamers,were engineered for highly sensitive detection of strontium ion(Sr^(2+)).The synergistic effect between the reduced effective diameter of the nanochannels due to MOF and the specific binding of Sr^(2+) by aptamers amplifies the difference in ionic current signals,enhancing detection sensitivity significantly.The MOF-modified nanochannels exhibit highly sensitive detection of Sr^(2+),with a limit of detection(LOD)being 0.03 nmol·L^(-1),whereas the LOD for anodized aluminum oxide(AAO)without the modified MOF nanosheets is only 1000 nmol·L^(-1).These findings indicate that the LOD of Sr^(2+) detected by the MOF-modified nanochannels is approximately 33,000 times higher than that by the nanochannels without MOF modification.Additionally,the highly reliable detection of Sr^(2+) in various water samples was achieved,with a recovery rate ranging from 94.00%to 118.70%.This study provides valuable insights into the rapidly advancing field of advanced nanochannel-based sensors and their diverse applications for analyzing complex samples,including environmental contaminant detection,food analysis,medical diagnostics,and more.展开更多
Objective:The interleukin-23 receptor (IL-23R) has been shown to be associated with autoimmune diseases in many different populations.This study aimed to investigate the association between IL-23R gene polymorphism...Objective:The interleukin-23 receptor (IL-23R) has been shown to be associated with autoimmune diseases in many different populations.This study aimed to investigate the association between IL-23R gene polymorphism and susceptibility to Hashimoto's thyroiditis (HT) in Chinese Han population of Shandong.Methods:A case-control cohort study was performed in 145 HT patients from First People's Hospital of Jining between February 2010 to October 2013 and 150 healthy controls.Two single nucleotide polymorphisms located in the promoter region ofIL-23R gene (rs 17375018 and rs7517847) were examined by polymerase chain reaction-restriction fragment length polymorphism analysis.Hardy-Weinberg equilibrium was performed using the Chi-square test.Genotype frequencies were estimated by direct counting,and allele and genotype frequencies between patients and controls were analyzed by the Chi-square test.Results:The rs 17375018 GG genotype and the G allele were significantly increased in HT patients compared with healthy controls (P =0.034 and P =0.013,respectively).No association was identified between HT patients and healthy controls in rs7517847.Conclusion:The study demonstrated that polymorphism of IL-23R gene rs17375018 is highly associated with HT in Chinese Han population of Shandong,suggesting that IL-23R gene polymorphism (rs 17375018 G) may play a critical role in susceptibility to HT.展开更多
Although root nodules are essential for biological nitrogen fixation in legumes,the cell types and molecular regulatory mechanisms contributing to nodule development and nitrogen fixation in determinate nodule legumes...Although root nodules are essential for biological nitrogen fixation in legumes,the cell types and molecular regulatory mechanisms contributing to nodule development and nitrogen fixation in determinate nodule legumes,such as soybean(Glycine max),remain incompletely understood.Here,we generated a single-nucleus resolution transcriptomic atlas of soybean roots and nodules at 14 days post inoculation(dpi)and annotated 17 major cell types,including six that are specific to nodules.We identified the specific cell types responsible for each step in the ureides synthesis pathway,which enables spatial compartmentalization of biochemical reactions during soybean nitrogen fixation.By utilizing RNA velocity analysis,we reconstructed the differentiation dynamics of soybean nodules,which differs from those of indeterminate nodules in Medicago truncatula.Moreover,we identified several putative regulators of soybean nodulation and two of these genes,GmbHLH93 and GmSCL1,were as-yet uncharacterized in soybean.Overexpression of each gene in soybean hairy root systems validated their respective roles in nodulation.Notably,enrichment for cytokinin-related genes in soybean nodules led to identification of the cytokinin receptor,GmCRE1,as a prominent component of the nodulation pathway.GmCRE1 knockout in soybean resulted in a striking nodule phenotype with decreased nitrogen fixation zone and depletion of leghemoglobins,accompanied by downregulation of nodule-specific gene expression,as well as almost complete abrogation of biological nitrogen fixation.In summary,this study provides a comprehensive perspective of the cellular landscape during soybean nodulation,shedding light on the underlying metabolic and developmental mechanisms of soybean nodule formation.展开更多
Metal antimony(Sb)is a promising anode material of potassium-ion batteries(PIBs)for its high theoretical capacity but limited by its inferior cycle stability due to the serious volume expansion during cycling.Herein,w...Metal antimony(Sb)is a promising anode material of potassium-ion batteries(PIBs)for its high theoretical capacity but limited by its inferior cycle stability due to the serious volume expansion during cycling.Herein,we design and construct a kind of low-crystalline Sb nanoparticles coated with amorphous Sb2O3 and dispersed into three-dimensional porous carbon via a strategy involving NaCl template-assisted insitu pyrolysis and subsequent low-temperature heat-treated in air.Significantly,the crystallinity and ratio of Sb/Sb_(2)O_(3) have been precisely tuned and controlled,and the optimized sample of HTSb@Sb_(2)O_(3)@C-4 displays a high reversible specific capacity of 543.9 m Ah g^(-1) at 0.1 A g^(-1),superior rate capability and excellent cycle stability(~273 m Ah g^(-1) at 2 A g^(-1) after 2000 cycles)as an anode of PIBs.The outstanding potassium-ion storage performance can be ascribed to the appropriate crystallinity and the multiplebuffer-matrix structure comprising an interconnected porous conductive carbon to relieve the volume changes and suppress the aggregation of Sb,a Sb nanoparticle core to shorten the ion transport pathways and decrease the mechanical stress,and a low-crystalline Sb_(2)O_(3) as the shell to consolidate the interface between Sb and carbon as well as facilitate the rapid electron transport.The dynamic analysis shows that the composite is mainly controlled by pseudocapacitance mechanism.This work provides a novel thought to design high-performance composite electrode in energy storage devices.展开更多
Aims Human activities and global changes have led to alterations in global and regional precipitation regimes.Despite extensive studies on the effects of changes in precipitation regimes on plant community composition...Aims Human activities and global changes have led to alterations in global and regional precipitation regimes.Despite extensive studies on the effects of changes in precipitation regimes on plant community composition across different types of grassland worldwide,few studies have specifically focused on the effects of precipitation changes on high-altitude alpine steppe at community and plant species levels in the Tibetan Plateau.Methods We investigated the effects of growing-season precipitation changes(reduced precipitation by 50%,ambient precipitation,enhanced precipitation by 50%)for 6 years on plant community composition in an alpine steppe of the Tibetan Plateau by linking above-to belowground traits of dominant species.Important Findings We found that reduced precipitation shifted community composition from dominance by bunchgrass(primarily Stipa purpurea)to dominance by rhizomatous grass(primarily Leymus secalinus).Roots and leaf traits of L.secalinus and S.purpurea differed in their responses to reduced precipitation.Reduced precipitation enhanced root vertical length and carbon(C)allocation to deep soil layers,and decreased the leaf width in L.secalinus,but it did not change the traits in S.purpurea.Moreover,reduced precipitation significantly enhanced rhizome biomass,length,diameter and adventitious root at the rhizome nodes in L.secalinus.These changes in traits may render rhizomatous grass greater competitive during drought stress.Therefore,our findings highlight important roles of above-and belowground traits of dominant species in plant community composition of alpine steppe under precipitation change.展开更多
Human metallothionein(MT)is a small-size yet efficient metal-binding protein,playing an essential role in metal homeostasis and heavy metal detoxification.MT contains two domains,each forming a polynuclear metal clust...Human metallothionein(MT)is a small-size yet efficient metal-binding protein,playing an essential role in metal homeostasis and heavy metal detoxification.MT contains two domains,each forming a polynuclear metal cluster with an exquisite hexatomic ring structure.The apoprotein is intrinsically disordered,which may strongly influence the clusters and the metal-thiolate(M-S)bonds,leading to a highly dynamic structure.However,these features are challenging to identify due to the transient nature of these species.The individual signal from dynamic conformations with different states of the cluster and M-S bond will be averaged and blurred in classic ensemble measurement.To circumvent these problems,we combined a single-molecule approach and multiscale molecular simulations to investigate the rupture mechanism and chemical stability of the metal cluster by a single MT molecule,focusing on the Zn4S11 cluster in theαdomain upon unfolding.Unusual multiple unfolding pathways and intermediates are observed for both domains,corresponding to different combinations of M-S bond rupture.None of the pathways is clearly preferred suggesting that unfolding proceeds from the distribution of protein conformational substates with similar M-S bond strengths.Simulations indicate that the metal cluster may rearrange,forming and breaking metal-thiolate bonds even when MT is folded independently of large protein backbone reconfiguration.Thus,a highly dynamic polynuclear metal cluster with multiple conformational states is revealed in MT,responsible for the binding promiscuity and diverse cellular functions of this metal-carrier protein.展开更多
基金supported by the National Key Research and Development Program of China (No. 2017YFA0402500)the National MCF Energy R&D Program of China (No. 2019YFE03040000)+5 种基金National Natural Science Foundation of China (Nos. 12005262 and 11975274)the Foundation of President of Hefei Institutes of Physical Science, CAS (No. YZJJ2018QN8)the Anhui Provincial Natural Science Foundation (No. 2108085J06)the Users with Excellence Program of Hefei Science Center CAS (Nos. 2021HSC-UE018 and 2020HSC-UE011)External Cooperation Program of Chinese Academy of Sciences (No. 116134KYSB20180035)Science Foundation of Institute of Plasma Physics, Chinese Academy of Sciences (No. DSJJ-2021-04)
文摘Resonant magnetic perturbations(RMPs)with high toroidal mode number n are considered for controlling edge-localized modes(ELMs)and divertor heat flux in future ITER H-mode operations.In this paper,characteristics of divertor heat flux under high-nRMPs(n=3 and 4)in H-mode plasma are investigated using newly upgraded infrared thermography diagnostic in EAST.Additional splitting strike point(SSP)accompanying with ELM suppression is observed under both RMPs with n=3 and n=4,the SSP in heat flux profile agrees qualitatively with the modeled magnetic footprint.Although RMPs suppress ELMs,they increase the stationary heat flux during ELM suppression.The dependence of heat flux on q_(95)during ELM suppression is preliminarily investigated,and further splitting in the original strike point is observed at q 495=during ELM suppression.In terms of ELM pulses,the presence of RMPs shows little influence on transient heat flux distribution.
基金supported by the National Key R&D Program of China(No.2017YFE0301100)National Natural Science Foundation of China(No.11875292)。
文摘Suppression and mitigation of a high-frequency Alfvén-like mode(HFAM)between type-I edge localized modes(ELMs)during ELM mitigation by resonant magnetic perturbation(RMP)is observed for the first time in the EAST tokamak.This mode is located near the edge pedestal region.The modeling result of the Alfvén continuum shows that the HFAM is located near the elipical Alfvén eigenmode(EAE)gap.During the application of n=1 RMP for ELM mitigation,the HFAM can be fully suppressed when the RMP amplitude exceeds a threshold,below which the HFAM is mitigated.The suppression is caused by a reduction of pedestal height induced by RMP.In the case using n=3 RMP,the mode is localized toroidally at specific phase depending on the phase of applied RMP,i.e.locked in the three-dimensional equilibrium formed by RMP.The dominant toroidal mode number of HFAM is around n=-6 and it reduces to-3 during the application of n=3 RMP,which indicates the existence of possible nonlinear coupling between the HFAM and RMP.Here the negative mode number denotes that the mode rotates in electron diamagnetic drift direction.The observation reported here improves the understanding of pedestal dynamics and its stability in RMP ELM control.
基金This work was financially supported by the National Natural Science Foundation of China(41877542,41907411).
文摘In arid and semi-arid sand dune ecosystems,belowground bud bank plays an important role in population regeneration and vegetation restoration.However,the responses of belowground bud bank size and composition to sand burial and its induced changes in soil environmental factors have been rarely studied.In arid sand dunes of Northwestern China,we investigated belowground bud bank size and composition of the typical rhizomatous psammophyte Psammochloa villosa as well as three key soil environmental factors(soil moisture,total carbon and total nitrogen)under different depths of sand burial.Total buds and rhizome buds increased significantly with increasing burial depth,whereas tiller buds first increased and then decreased,with a peak value at the depth of 20-30 cm.Soil moisture increased significantly with sand burial depth,and was positively correlated with the number of all buds and rhizome buds.Soil total carbon concentration first increased and then decreased with sand burial depth,and total nitrogen concentration was significantly lower under deep sand burial than those at shallow depths,and only the number of tiller buds was positively correlated with soil total nitrogen concentration.These results indicate that soil moisture rather than soil nutrient might regulate the belowground bud bank of P.villosa,and that clonal psammophytes could regulate their belowground bud bank in response to sand burial and the most important environmental stress(i.e.,soil moisture).These responses,as the key adaptive strategy,may ensure clonal plant population regeneration and vegetation restoration in arid sand dunes.
基金support from the National Natural Science Foundation of China(41877542).
文摘Human activities and industrialization have significantly increased soil nutrients,such as nitrogen(N)and phos-phorus(P),profoundly impacting the composition and structure of plant community,as well as the ecosystem functions,especially in nutrient-limited ecosystems.However,as the key propagule pool of perennial grasslands,how belowground bud bank and its relationship with aboveground vegetation respond to short-term changes in soil nutrients was still unclear.In this study,we conducted a short-term(2021–2022)soil fertilization experiment with N addition(10 g N m^(-2) yr^(-1))and P addition(5 g N m^(-2) yr^(-1))in the meadow steppe of Inner Mongolia,China,to explore the responses of belowground bud bank,aboveground shoot population and their relationships(represented by the ratio of bud to shoot density-meristem limitation index(MLI))for the whole community and three plant functional groups(perennial rhizomatous grasses-PR,perennial bunchgrasses-PB,and perennial forbs-PF)to nutrient addition.The short-term nutrient addition had no significant influences on belowground bud density,aboveground shoot density,and MLI of the whole plant community.Plant functional groups showed different responses to soil fertilization.Specifically,N addition significantly increased the bud density and shoot density of PR,especially in combination with P addition.N addition reduced the shoot density of PF but had no influence on its bud density and MLI.Nutrient addition had significant effects on the three indicators of PB.Our study indicates that the belowground bud bank and its relationship with aboveground vegetation in temperate meadow steppe are insensitive to short-term soil fertilization,but plant functional groups exhibit specific responses in terms of population regeneration,which implies that plant community composition and ecosystem functions will be changed under the ongoing global change.
基金financially supported by the National Natural Science Foundation of China(Nos.51871046,51902046,52071073,51874079,51571054,51771046,and 51674068)the Natural Science Foundation of Liaoning Province,China(No.201602257)+2 种基金Natural Science Foundation of Hebei Province,China(Nos.E2019501097,E2018501091,E2020501004)the Science and Technology Project of Hebei Province,China(No.15271302D)the Fundamental Research Funds for the Central Universities,China(Nos.N182304017,N182304015,N172302001,N172304044).
文摘Ultrafine nano-scale Cu2Sb alloy confined in a three-dimensional porous carbon was synthesized using NaCl template-assisted vacuum freeze-drying followed by high-temperature sintering and was evaluated as an anode for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).The alloy exerts excellent cycling durability(the capacity can be maintained at 328.3 mA·h·g^(-1) after 100 cycles for SIBs and 260 mA·h·g^(-1) for PIBs)and rate capability(199 mA·h·g^(-1) at 5 A·g^(-1) for SIBs and 148 mA·h·g^(-1) at 5 A·g^(-1) for PIBs)because of the smooth electron transport path,fast Na/K ion diffusion rate,and restricted volume changes from the synergistic effect of three-dimensional porous carbon networks and the ultrafine bimetallic nanoalloy.This study provides an ingenious design route and a simple preparation method toward exploring a high-property electrode for K-ion and Na-ion batteries,and it also introduces broad application prospects for other electrochemical applications.
文摘In order to meet the training needs of Partial Discharge (PD) detection personnel, a PD detection training simulator is developed. The composition of the system and the functions of the modules are described, then the three-dimensional graphic engine based on Open Scene Graph (OSG) and the way of scene organization based on hierarchical tree are introduced, moreover, the methods of fault simulation and detection instrument simulation based on algorithm component library are presented. Application shows that the system can provide various detection schemes, and it is an ideal training tool for the detection personnel.
文摘Mesoporous TiO2 ceramic films have been prepared upon the Ti alloy substrate by the micro-arc oxidation (MAO) technology. To enhance the photo-catalytic property of the films, Eu2O3 particles were added into the electrolyte solution of Na2CO3/Na2SiO3. Scanning electron microscope (SEM), energy dispersive (EDS), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) are employed to characterize the modified films. Diffuse reflectance spectra (DRS) test, photo-generated current test and photo decomposition test are applied to evaluate the photo-catalytic property of the modified films. The results show that Eu2O3 transformed into one-dimensional (1-D) nano-wires embedded within the composite film, and the film has high photo-catalytic property.
文摘Obtaining timely and accurate data on the spatiotemporal dynamics of electric power consumption(EPC)is crucial for the effective utilization of electric power in China.The Defense Meteorological Satellite Program’s Operational Linescan System(DMSP/OLS)nighttime stable light(NSL)data have good potential for estimating EPC effectively at large scales.However,saturated lighted pixels contained within the NSL data limit the accuracy of EPC estimation.We developed a new method to correct the saturated lighted pixels,using the SPOT VEGETATION(SPOT/VGT)10-day synthesis product(S10)normalized differ-ence vegetation index(NDVI)data and then modeled the spatiotemporal dynamics of EPC in China' Mainland from 2000 to 2008.The results demon-strated the reliability of our approach with an average Rvalue of 0.93(P<0.001)and an average relative error of-28.92%.EPC in China' Mainland showed an average annual growth rate of 13.46% during the study period from 1198.23 billion kWh in 2000 to 3290.51 billion kWh in 2008.EPC in China' Mainland also showed clear regional variation.Northern coastal China and eastern coastal China consumed 37.61%of the total EPC in China' Mainland,with only 25.96% of the population and 6.11% of the area.
基金the National Natural Science Foundation of China(Nos.51902046,51871046,52071073,51771046 and 51971055)Natural Science Foundation of Hebei Province(Nos.E2019501097,E2018501091 and E2020501004)+1 种基金the Science and Technology Project of Hebei Province(No.15271302D)Funds for the Central Universities(N2123032)。
文摘High entropy oxides(HEOs),as a new type of single-phase multielement solid solution materials,have shown many attractive features and promising application prospect in the energy storage fleld.Herein,six-element HEOs(CoNiZnFeMnLi)_(3)O_(4) and(CoNiZnCrMnLi)_(3)O_(4) with spinel structure are successfully prepared by con-ventional solid-phase method and present outstanding lithium storage performances due to the synergy effect of various electrochemically active elements and the entropy stabilization.By contrast,(CoNiZnFeMnLi)_(3)O_(4) delivers higher initial discharge specific capacity of 1104.3 mAh·g^(−1),better cycle stability(84%capacity retention after 100 cycles at 100 mA·g^(−1)) and rate performance(293 mAh·g^(−1)at 2000 mA·g^(−1))in the half-cell.Moreover,the full-cell assembled with(CoNiZnFeMnLi)_(3)O_(4) and LiCoO_(2)provides a reversible specific capacity of 260.2 mAh·g^(−1)after 100 cycles at 500 mA·g^(−1).Ex situ X-ray diffraction reveals the electrochemical reaction mechanism of HEOs(CoNiZnFeMnLi)_(3)O_(4),and the amorphous phase and the large amount of oxygen vacancies were obtained after the initial discharge process,which are responsible for the excellent cycle and rate performance.This research puts forward fresh insights for the development of advanced energy storage materials for high-performance batteries.
基金supported by the National Natural Science Foundation of China(Nos.52071073,52177208,52171202 and 51971055)Hebei Province"333 talent project"(No.C20221012)+2 种基金the Natural Science Foundation of Hebei Province(No.E2020501004)the Fundamental Research Funds for the Central Universities(No.N2123032)the Science and Technology Project of Hebei Education Department(No.BJK2023005)。
文摘Antimony-based materials with high capacities and moderate potentials are promising anodes for lithium-/-sodium-ion batteries.However,their tremendous volume expansion and inferior conductivity lead to poor structural stability and sluggish reaction kinetics.Herein,a doubleconfined nanoheterostructure Sb/Sb_(2)S_(3)@Ti_(3)C_(2)T_(x)@C has been fabricated through a solvothermal method followed by low-temperature heat treatment.The dual protection of“MXene”and“carbon”can better accommodate the volume expansion of Sb/Sb_(2)S_(3).The strong covalent bond(Ti-S,Ti-O-Sb,C-O-Sb)can firmly integrate Sb-based material with Ti_(3)C_(2)T_(x)and carbon,which significantly improves the structure stability.In addition,the carbon layer can restrain the oxidation of MXenes,and the nano-Sb/Sb_(2)S_(3)can facilitate electron/ion transport and suppress the restacking of MXenes.The heterogeneous interface between Sb and Sb_(2)S_(3)can further promote interfacial charge transfer.The MXene-Sb/Sb_(2)S_(3)@C-1 with the optimal Sb content shows high specific capacities,comparable rate properties and ultra-stable cycling performances(250 m Ah·g^(-1)after 2500 cycles at 1 A·g^(-1)for sodium-ion batteries).Ex situ X-ray diffractometer(XRD)test reveals the storage mechanism including the conversion and alloying process of MXene-Sb/Sb_(2)S_(3)@C-1.Cyclic voltammetry(CV)test results demonstrate that the pseudocapacitance behavior is dominant in MXene-Sb/Sb_(2)S_(3)@C-1,especially at large current.This design paves the way for exploring high-performance alloy-based/conversion-type anode for energy storage devices.
基金supported by the National Natural Science Foundation of China(No.22090050,No.22090052,No.22176180)National Basic Research Program of China(No.2021YFA1200400)+1 种基金the Natural Science Foundation of Hubei Province(No.2024AFA001)Shenzhen Science and Technology Program(No.JCYJ20220530162406014)。
文摘Strontium-90,a highly radioactive isotope,accumulates within the food chain and skeletal structure,posing significant risks to human health.There is a critical need for a sensitive detection strategy for Strontium-90 in complex environmental samples.Here,solid-state nanochannels,modified with metal-organic frameworks(MOF)and specific aptamers,were engineered for highly sensitive detection of strontium ion(Sr^(2+)).The synergistic effect between the reduced effective diameter of the nanochannels due to MOF and the specific binding of Sr^(2+) by aptamers amplifies the difference in ionic current signals,enhancing detection sensitivity significantly.The MOF-modified nanochannels exhibit highly sensitive detection of Sr^(2+),with a limit of detection(LOD)being 0.03 nmol·L^(-1),whereas the LOD for anodized aluminum oxide(AAO)without the modified MOF nanosheets is only 1000 nmol·L^(-1).These findings indicate that the LOD of Sr^(2+) detected by the MOF-modified nanochannels is approximately 33,000 times higher than that by the nanochannels without MOF modification.Additionally,the highly reliable detection of Sr^(2+) in various water samples was achieved,with a recovery rate ranging from 94.00%to 118.70%.This study provides valuable insights into the rapidly advancing field of advanced nanochannel-based sensors and their diverse applications for analyzing complex samples,including environmental contaminant detection,food analysis,medical diagnostics,and more.
文摘Objective:The interleukin-23 receptor (IL-23R) has been shown to be associated with autoimmune diseases in many different populations.This study aimed to investigate the association between IL-23R gene polymorphism and susceptibility to Hashimoto's thyroiditis (HT) in Chinese Han population of Shandong.Methods:A case-control cohort study was performed in 145 HT patients from First People's Hospital of Jining between February 2010 to October 2013 and 150 healthy controls.Two single nucleotide polymorphisms located in the promoter region ofIL-23R gene (rs 17375018 and rs7517847) were examined by polymerase chain reaction-restriction fragment length polymorphism analysis.Hardy-Weinberg equilibrium was performed using the Chi-square test.Genotype frequencies were estimated by direct counting,and allele and genotype frequencies between patients and controls were analyzed by the Chi-square test.Results:The rs 17375018 GG genotype and the G allele were significantly increased in HT patients compared with healthy controls (P =0.034 and P =0.013,respectively).No association was identified between HT patients and healthy controls in rs7517847.Conclusion:The study demonstrated that polymorphism of IL-23R gene rs17375018 is highly associated with HT in Chinese Han population of Shandong,suggesting that IL-23R gene polymorphism (rs 17375018 G) may play a critical role in susceptibility to HT.
基金supported by the CAS Project for Young Scientists in Basic Research(YSBR-011)National Key Research and Development Program of China(2021YFF1000103)。
文摘Although root nodules are essential for biological nitrogen fixation in legumes,the cell types and molecular regulatory mechanisms contributing to nodule development and nitrogen fixation in determinate nodule legumes,such as soybean(Glycine max),remain incompletely understood.Here,we generated a single-nucleus resolution transcriptomic atlas of soybean roots and nodules at 14 days post inoculation(dpi)and annotated 17 major cell types,including six that are specific to nodules.We identified the specific cell types responsible for each step in the ureides synthesis pathway,which enables spatial compartmentalization of biochemical reactions during soybean nitrogen fixation.By utilizing RNA velocity analysis,we reconstructed the differentiation dynamics of soybean nodules,which differs from those of indeterminate nodules in Medicago truncatula.Moreover,we identified several putative regulators of soybean nodulation and two of these genes,GmbHLH93 and GmSCL1,were as-yet uncharacterized in soybean.Overexpression of each gene in soybean hairy root systems validated their respective roles in nodulation.Notably,enrichment for cytokinin-related genes in soybean nodules led to identification of the cytokinin receptor,GmCRE1,as a prominent component of the nodulation pathway.GmCRE1 knockout in soybean resulted in a striking nodule phenotype with decreased nitrogen fixation zone and depletion of leghemoglobins,accompanied by downregulation of nodule-specific gene expression,as well as almost complete abrogation of biological nitrogen fixation.In summary,this study provides a comprehensive perspective of the cellular landscape during soybean nodulation,shedding light on the underlying metabolic and developmental mechanisms of soybean nodule formation.
基金financially supported by the National Natural Science Foundation of China(Nos.51871046,51902046,52071073,51771046,51971055)Natural Science Foundation of Hebei Province(No.E2019501097,E2018501091,E2020501004)The Science and Technology Project of Hebei Province(No.15271302D)。
文摘Metal antimony(Sb)is a promising anode material of potassium-ion batteries(PIBs)for its high theoretical capacity but limited by its inferior cycle stability due to the serious volume expansion during cycling.Herein,we design and construct a kind of low-crystalline Sb nanoparticles coated with amorphous Sb2O3 and dispersed into three-dimensional porous carbon via a strategy involving NaCl template-assisted insitu pyrolysis and subsequent low-temperature heat-treated in air.Significantly,the crystallinity and ratio of Sb/Sb_(2)O_(3) have been precisely tuned and controlled,and the optimized sample of HTSb@Sb_(2)O_(3)@C-4 displays a high reversible specific capacity of 543.9 m Ah g^(-1) at 0.1 A g^(-1),superior rate capability and excellent cycle stability(~273 m Ah g^(-1) at 2 A g^(-1) after 2000 cycles)as an anode of PIBs.The outstanding potassium-ion storage performance can be ascribed to the appropriate crystallinity and the multiplebuffer-matrix structure comprising an interconnected porous conductive carbon to relieve the volume changes and suppress the aggregation of Sb,a Sb nanoparticle core to shorten the ion transport pathways and decrease the mechanical stress,and a low-crystalline Sb_(2)O_(3) as the shell to consolidate the interface between Sb and carbon as well as facilitate the rapid electron transport.The dynamic analysis shows that the composite is mainly controlled by pseudocapacitance mechanism.This work provides a novel thought to design high-performance composite electrode in energy storage devices.
基金This study is supported by National Natural Science Foundati on of China(32060286,31660160)Youth Talent Program of Northwestern Normal University(2019YJ-1,NWNU-LKQN2019-10)Natural Science Foundation of Qinghai Province(2019-ZJ-910).
文摘Aims Human activities and global changes have led to alterations in global and regional precipitation regimes.Despite extensive studies on the effects of changes in precipitation regimes on plant community composition across different types of grassland worldwide,few studies have specifically focused on the effects of precipitation changes on high-altitude alpine steppe at community and plant species levels in the Tibetan Plateau.Methods We investigated the effects of growing-season precipitation changes(reduced precipitation by 50%,ambient precipitation,enhanced precipitation by 50%)for 6 years on plant community composition in an alpine steppe of the Tibetan Plateau by linking above-to belowground traits of dominant species.Important Findings We found that reduced precipitation shifted community composition from dominance by bunchgrass(primarily Stipa purpurea)to dominance by rhizomatous grass(primarily Leymus secalinus).Roots and leaf traits of L.secalinus and S.purpurea differed in their responses to reduced precipitation.Reduced precipitation enhanced root vertical length and carbon(C)allocation to deep soil layers,and decreased the leaf width in L.secalinus,but it did not change the traits in S.purpurea.Moreover,reduced precipitation significantly enhanced rhizome biomass,length,diameter and adventitious root at the rhizome nodes in L.secalinus.These changes in traits may render rhizomatous grass greater competitive during drought stress.Therefore,our findings highlight important roles of above-and belowground traits of dominant species in plant community composition of alpine steppe under precipitation change.
基金was funded by the Fundamental Research Funds for the Central Universities(Grant No.14380259)the Natural Science Foundation of Jiangsu Province(Nos.BK20200058 and BK20202004)+1 种基金the National Natural Science Foundation of China(Grant Nos.21771103 and 21977047)the Fundação para Amparo a Pesquisa do Estado de São Paulo(FAPESP)(scholarship 2017/26109-0 to FC and Grants 2018/08311-9 and 2019/21856-7 to GMA)。
文摘Human metallothionein(MT)is a small-size yet efficient metal-binding protein,playing an essential role in metal homeostasis and heavy metal detoxification.MT contains two domains,each forming a polynuclear metal cluster with an exquisite hexatomic ring structure.The apoprotein is intrinsically disordered,which may strongly influence the clusters and the metal-thiolate(M-S)bonds,leading to a highly dynamic structure.However,these features are challenging to identify due to the transient nature of these species.The individual signal from dynamic conformations with different states of the cluster and M-S bond will be averaged and blurred in classic ensemble measurement.To circumvent these problems,we combined a single-molecule approach and multiscale molecular simulations to investigate the rupture mechanism and chemical stability of the metal cluster by a single MT molecule,focusing on the Zn4S11 cluster in theαdomain upon unfolding.Unusual multiple unfolding pathways and intermediates are observed for both domains,corresponding to different combinations of M-S bond rupture.None of the pathways is clearly preferred suggesting that unfolding proceeds from the distribution of protein conformational substates with similar M-S bond strengths.Simulations indicate that the metal cluster may rearrange,forming and breaking metal-thiolate bonds even when MT is folded independently of large protein backbone reconfiguration.Thus,a highly dynamic polynuclear metal cluster with multiple conformational states is revealed in MT,responsible for the binding promiscuity and diverse cellular functions of this metal-carrier protein.