Chlorotrifluoroethylene(CTFE)is a vital fluorinated olefinic monomer produced through the catalytic hydrodechlorination of trichlorotrifluoroethane(CFC-113),an eco-friendly process.However,hydrodechlorination catalyst...Chlorotrifluoroethylene(CTFE)is a vital fluorinated olefinic monomer produced through the catalytic hydrodechlorination of trichlorotrifluoroethane(CFC-113),an eco-friendly process.However,hydrodechlorination catalysts for olefin production often suffer from poor stability.The Pd/AC catalyst and Pd-Cu/AC catalyst prepared by co-impregnation method exhibited poor stability,Pd-Cu/AC catalyst with CFC-113 conversion dropping to around 37%after 50 h of hydrodechlorination reaction.Brunauer-Emmett-Teller,transmission electron microscopy,X-ray photoelectron spectroscopy,and X-ray diffraction of fresh and deactivated Pd/AC catalysts indicate that the deactivation of Pd/AC catalysts is due to high-temperature agglomeration of Pd.Comparative analysis of fresh and deactivated Pd-Cu/AC catalysts using Brunauer-Emmett-Teller,transmission electron microscopy,and thermogravimetric analysis techniques revealed decreased dispersion of active sites,reduced surface area,catalyst aggregation deactivation,and a significant decrease in Cu content.Furthermore,the results of NH3-TPD revealed that the acid sites of the catalyst increased significantly.X-ray diffraction spectra indicated the formation of new species,basic copper chloride(Cu_(2)(OH)_(3)Cl),during the reaction.As the reaction progressed,these new species agglomerated,leading to a gradual loss of catalyst activity.Moreover,the deactivated catalyst was successfully reactivated using a simple alkaline washing method.展开更多
Dry reforming of methane(DRM) is an attractive technology for utilizing the greenhouse gases(CO_(2) and CH_(4)) to produce syngas. However, the catalyst pellets for DRM are heavily plagued by deactivation by coking, w...Dry reforming of methane(DRM) is an attractive technology for utilizing the greenhouse gases(CO_(2) and CH_(4)) to produce syngas. However, the catalyst pellets for DRM are heavily plagued by deactivation by coking, which prevents this technology from commercialization. In this work, a pore network model is developed to probe the catalyst deactivation by coking in a Ni/Al_(2)O_(3) catalyst pellet for DRM. The reaction conditions can significantly change the coking rate and then affect the catalyst deactivation. The catalyst lifetime is higher under lower temperature, pressure, and CH_(4)/CO_(2) molar ratio, but the maximum coke content in a catalyst pellet is independent of these reaction conditions. The catalyst pellet with larger pore diameter, narrower pore size distribution and higher pore connectivity is more robust against catalyst deactivation by coking, as the pores in this pellet are more difficult to be plugged or inaccessible.The maximum coke content is also higher for narrower pore size distribution and higher pore connectivity, as the number of inaccessible pores is lower. Besides, the catalyst pellet radius only slightly affects the coke content, although the diffusion limitation increases with the pellet radius. These results should serve to guide the rational design of robust DRM catalyst pellets against deactivation by coking.展开更多
The overall performance of metal catalysts can be efficiently adjusted by modifying carbon carriers with different valence sulfur precursors.The wet impregnation technique successfully prepared carbon material carrier...The overall performance of metal catalysts can be efficiently adjusted by modifying carbon carriers with different valence sulfur precursors.The wet impregnation technique successfully prepared carbon material carriers doped with varying sources of sulfur(Na_(2)SO_(4),NaHSO_(3),Na_(2)S·9H_(2)O).Palladium carbon catalysts doped with different sulfur precursors had been prepared with the aid of the liquid-phase reduction method of the selective hydrogenation of o-chloronitrobenzene(o-CNB)to o-chloroaniline(o-CAN).The catalyst prepared for Na_(2)S·9H_(2)O as a precursor has excellent performance,and the selectivity for o-CAN is more than 99.9%at 100%conversion.In addition,the characterization results show that with the decrease of S valence,the electronic effect between S and Pd increases,and the outer electron shift of Pd increases,which reduces the adsorption and dissociation ability of Pd to hydrogen,resulting in excellent selectivity.The effects provided a good idea for the hydrogenation of o-CNB and a different point of view on sulfur doping in a variety of hydrogenation reactions.展开更多
In order to improve the catalytic performance of the nitrobenzene hydrogenation rearrangement to prepare p-aminophenol,a bimetallic Pt-Ni/C(PNC)catalyst was synthesized.Taking advantage of the synergistic effect of Ni...In order to improve the catalytic performance of the nitrobenzene hydrogenation rearrangement to prepare p-aminophenol,a bimetallic Pt-Ni/C(PNC)catalyst was synthesized.Taking advantage of the synergistic effect of Ni and Pt to enhance product selectivity and catalytic performance stability,the electrons in Ni are moved to Pt by the electron effect,which affects the catalyst’s ability to activate H_(2)as well as the amount of hydrogen activated.Furthermore,due to the strong Pt(5d)-Ni(3d)coupling effect,Ni can effectively maintain Pt stability in the acidic system and reduce Pt dissolution.The stability of the PNC can be found to be greatly enhanced compared to the Pt/C(PC)catalyst,and p-aminophenol selectivity is greatly enhanced,showing excellent catalytic performance.展开更多
The acidity and acid distribution of hierarchical porous ZSM-5 were tailored via phosphate modification. The catalytic results showed that both benzene conversion and selectivity of toluene and xylene increased with t...The acidity and acid distribution of hierarchical porous ZSM-5 were tailored via phosphate modification. The catalytic results showed that both benzene conversion and selectivity of toluene and xylene increased with the presence of appropriate amount of phosphorus. Meanwhile, side reactions such as methanol to olefins related with the formation of by-product ethylbenzene formation and isomerization of xylene to meta-xylene were suppressed efficiently. The acid strength and sites amount of Br?nsted acid of the catalyst were crucial for improving benzene conversion and yield of xylene, whereas passivation of external surface acid sites played an important role in breaking thermodynamic equilibrium distribution of xylene isomers.展开更多
The porous material HZSM-5 zeolite with micro-mesopore hierarchical porosity was prepared by post-treatment (combined alkali treatment and acid leaching) of parent zeolite and its catalytic performance for benzene a...The porous material HZSM-5 zeolite with micro-mesopore hierarchical porosity was prepared by post-treatment (combined alkali treatment and acid leaching) of parent zeolite and its catalytic performance for benzene alkylation with methanol was investigated. The effect of post-treatment on the textural properties was characterized by various techniques (including ICP-AES, XRD, nitrogen sorption isotherms, SEM, NH3-TPD, Py-IR and TG). The results indicated that the post-treatment could modify the structural and acidic properties of HZSM-5 zeolite. In this procedure, not only additional mesopores were created by selective extraction of silicon but also the acidity was tuned. Consequently, the modified HZSM-5 zeolite showed larger external surface area with less acid sites as compared to the parent zeolite. It was found out that the modified zeolite exhibited a higher benzene conversion and xylene selectivity for alkylation of benzene with methanol as well as excellent life span of the catalyst than conventional ones. This can be explained by the facts that the presence of additional mesopores improved the diffusion property in the reactions. Furthermore, the modified zeolite showed an appropriate Bronsted acidity for effective suppression of the side reaction of methanol to olefins, thus reduced the accumulation of coke on the HZSM-5 zeolite, which was favorable for the catalyst stability. In comparison with the parent HZSM-5 zeolite, the modified zeolite by alkali treatment and acid leaching showed better performance for the benzene alkylation with methanol.展开更多
The selective hydrogenation of halogenated nitrobenzene over noble metal catalysts(Pd, Pt, and Ir) has attracted much attention owing to its high efficiency and environmental friendliness. However, the effect of size ...The selective hydrogenation of halogenated nitrobenzene over noble metal catalysts(Pd, Pt, and Ir) has attracted much attention owing to its high efficiency and environmental friendliness. However, the effect of size on the catalytic performance varies among different metal catalysts. In this study, sub-nano(<3 nm) Ir and Pd particles were prepared, and their catalytic properties for hydrogenation of halogenated nitrobenzene were evaluated.Results show that high selectivity(N 99%) was achieved over small Ir nanoparticles, in which the selectivity over the Pd with same size was much lower than that on Ir nanoparticles. Meanwhile, Ir and Pd have different hydrogen consumption rates and reaction rates. Density functional theory calculations showed that p-chloronitrobenzene(CNB) has different adsorption properties on Ir and Pd. The distance between oxygen(cholorine) and Ir is much shorter(longer) than that between oxygen and Pd. The reaction barriers of dechlorination of p-CNB and p-chloroaniline over different Ir models are much larger than those on Pd. Especially,lower coordination of Ir leads to larger barriers of dechlorination reaction. These theoretical results explain the difference between Ir and Pd on hydrogenation of halogenated nitrobenzene.展开更多
Developing of non-metallic catalyst to replace metal catalyst is a meaningful and challenging direction.In this work,the non-metallic catalyst was synthetized successfully by loading ionic liquid onto the silica surfa...Developing of non-metallic catalyst to replace metal catalyst is a meaningful and challenging direction.In this work,the non-metallic catalyst was synthetized successfully by loading ionic liquid onto the silica surface,which was applied for the gas-phase dehydrochlorination of 1,1,2,2-tetrachloroethane.The 12%TPPC/SiO2(wt%)showed the best results with the conversion of 1,1,2,2-tetrachloroethane reaching 100%.The selectivity of 1,1,2-trichloroethylene was 100%,and no deactivation was found during the evaluation period.The catalytic mechanism was investigated and possible reaction route was given,which was a reference for fabricating and design of solid base catalyst.展开更多
A novel template-free oxalate route was applied to synthesize different mesoporous manganese oxides(amorphous manganese oxide(AMO),Mn5 O8,Mn3 O4,Mn O2)in the narrow temperature range from 350°C to 400°C by c...A novel template-free oxalate route was applied to synthesize different mesoporous manganese oxides(amorphous manganese oxide(AMO),Mn5 O8,Mn3 O4,Mn O2)in the narrow temperature range from 350°C to 400°C by controlling the calcination conditions,which were employed as the efficient catalysts for the oxidative coupling of alcohols with amines to imines.The chemical and structural properties of the manganese oxides were characterized by the methods of thermogravimetry analysis and heat flow(TG-DSC),X-ray diffraction(XRD),nitrogen sorption,scanning electron microscope(SEM),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),H2 temperature-programmed reduction(H2-TPR),and inductively coupled plasma optical emission spectrometry(ICP-OES)techniques.The structures of different manganese oxides were confirmed by characterization.The M-350(AMO)presented the maximum surface area,amorphous nature,the lowest reduction temperature,the higher(Mn3++Mn4+)/Mn2+ratio,and the higher adsorbed oxygen species compared to other samples.Among the catalysts,M-350 showed the best catalytic performance using air as an oxidant,and the conversion of benzyl alcohol(BA)and the selectivity of N-benzylideneaniline(NBA)reached as high as 100%and 97.1%respectively at the lower reaction temperature(80°C)for 1 h.M-350 had also the highest TOF value(0.0100 mmol·mg-1·h-1)compared to the other manganese oxide catalysts.The catalyst was reusable and gave 95.8%conversion after 5 reuse tests,the XRD pattern of the reactivated M-350 did not show any obvious change.Lattice oxygen mobility and(Mn3++Mn4+)/Mn2+ratio were found to play the important roles in the catalytic activity of aerobic reactions.展开更多
A redox process combining propane dehydrogenation(PDH)with selective hydrogen combustion(SHC)is proposed,modeled,simulated,and optimized.In this process,PDH and SHC catalysts are physically mixed in a fixed-bed reacto...A redox process combining propane dehydrogenation(PDH)with selective hydrogen combustion(SHC)is proposed,modeled,simulated,and optimized.In this process,PDH and SHC catalysts are physically mixed in a fixed-bed reactor,so that the two reactions proceed simultaneously.The redox process can be up to 177.0%higher in propylene yield than the conventional process where only PDH catalysts are packed in the reactor.The reason is twofold:firstly,SHC reaction consumes hydrogen and then shifts PDH reaction equilibrium towards propylene;secondly,SHC reaction provides much heat to drive the highly endothermic PDH reaction.Considering propylene yield,operating time,and other factors,the preferable operating conditions for the redox process are a feed temperature of 973 K,a feed pressure of 0.1 MPa,and a mole ratio of H_(2) to C_(3)H_(8) of 0.15,and the optimal mass fraction of PDH catalyst is 0.5.This work should provide some useful guidance for the development of redox processes for propane dehydrogenation.展开更多
Phosphorus(P)is the second most limiting nutrient for plant growth.Previous studies suggested that P substantially affects the yield and quality of tea by affecting root growth,the decomposition and metabolism of mine...Phosphorus(P)is the second most limiting nutrient for plant growth.Previous studies suggested that P substantially affects the yield and quality of tea by affecting root growth,the decomposition and metabolism of minerals and metabolites in plants.Thus,the environmental pollution and degradation of crop quality caused by irrational fertilization is of increasing interest for researchers worldwide.To understand the effects of P fertilization on tea quality and metabolism of key quality components,three P fertilization levels(excessive,appropriate,and deficient application)were applied to tea plants using pot experiments.Content of P,potassium,polyphenols,amino acids and anthocyanins in the leaves or soil were quantified.The sensory quality of tea infusion was reduced under irrational(excessive or deficient)P fertilization.Under P deficiency,the total content of polyphenols and anthocyanins in the leaves were strongly increased compared with those of the control.A high soil P content(excessive)inhibited polyphenol accumulation,but induced the accumulation of certain anthocyanins,such as peonidin-3-Osambubioside-5-O-glucoside and peonidin-3-O-5-O-(6-O-p-coumaryl)-diglucoside.These results suggest that the reduction of tea quality caused by irrational P application is associated with anthocyanin metabolism,which provides a scientific basis for improving P fertilization strategies in tea plantations.展开更多
In our present work, the high-silica hierarchical porous ZSM-5 with appropriate Br(o|¨)nsted acidity and hierarchical porous structure was synthesized by sol-gel method for continuously catalytic conversion of be...In our present work, the high-silica hierarchical porous ZSM-5 with appropriate Br(o|¨)nsted acidity and hierarchical porous structure was synthesized by sol-gel method for continuously catalytic conversion of benzene alkylation with methanol to xylene. The effects of temperature, pressure, benzene/methanol molar ratio and weight hour space velocity(WHSV) on the catalytic performance of the catalyst were investigated as well. As a result, the high-silica hierarchical porous ZSM-5 showed great performance as the yield of xylene was up to 41.1% under the optimum reaction conditions(500 ℃,0.1 MPa,M_(benzene)/M_(methanol)= 1:1.5 and WHSV=4 h 1), while the selectivity to by-product, ethylbenzene, was well suppressed(below 0.1%). In addition, the catalyst structure and properties were characterized by the means of XRD, IR, TPD,SEM, TEM and N_2 physical adsorption technologies.展开更多
Enhancing the selectivity of imines for the oxidative self-coupling of primary amines was found to be challenging in the heterogeneous catalysis.Three different manganese oxides(M-3,M-4,M-5) were synthesized by contro...Enhancing the selectivity of imines for the oxidative self-coupling of primary amines was found to be challenging in the heterogeneous catalysis.Three different manganese oxides(M-3,M-4,M-5) were synthesized by controlling the calcination temperature using a simple template-free oxalate route.The prepared manganese oxides were systematically characterized using XRD,N2 sorption,SEM,TEM,XPS,H2-TPR techniques.M-4 gave 96.2% selectivity of imine at 100% conversion of benzylamine,which was far more superior than other existing protocols.Mn^3+/Mn^4+ ratio was found to affect the selectivity of the imines.The probable reaction pathway for amines oxidation catalyzed by manganese oxides was proposed for the first time.展开更多
We utilize the nonlinear acoustic solver(NLAS)and Ffowcs-Williams/Hawkings(FW-H)equation to investigate the noise generation and radiation due to shock(wave)and boundary layer interaction(SBLI)in the inlet duct.A clas...We utilize the nonlinear acoustic solver(NLAS)and Ffowcs-Williams/Hawkings(FW-H)equation to investigate the noise generation and radiation due to shock(wave)and boundary layer interaction(SBLI)in the inlet duct.A classical benchmark for SBLI is chosen to validate the flow features and numerical results show good agreement with experimental results.In the simulation of the noise generated by SBLI,the inlet buzz phenomenon is successfully observed.The oscillation of the normal shock is a kind of little buzz and the oscillation of inner shocks is a kind of big buzz with a frequency around 100 Hz.In the far-field,frequency spectrums show a dominant frequency close to the frequency of inner shocks oscillation.This indicates that the oscillation of inner shocks determines the magnitude of the overall sound pressure level(OASPL)of the far-field noise.展开更多
基金supported by the National Natural Science Foundation of China(22008212,22078292,21902124)Natural Science Basic Research Planning Shaanxi Province of China(2017ZDJC-29)+2 种基金Key Research and Development Project of Shaanxi Province(2018ZDXM-GY-173)China Postdoctoral Science Foundation(2019 M663848)Open cooperative innovation fund of Xi'an Institute of modern chemistry(SYJJ48).
文摘Chlorotrifluoroethylene(CTFE)is a vital fluorinated olefinic monomer produced through the catalytic hydrodechlorination of trichlorotrifluoroethane(CFC-113),an eco-friendly process.However,hydrodechlorination catalysts for olefin production often suffer from poor stability.The Pd/AC catalyst and Pd-Cu/AC catalyst prepared by co-impregnation method exhibited poor stability,Pd-Cu/AC catalyst with CFC-113 conversion dropping to around 37%after 50 h of hydrodechlorination reaction.Brunauer-Emmett-Teller,transmission electron microscopy,X-ray photoelectron spectroscopy,and X-ray diffraction of fresh and deactivated Pd/AC catalysts indicate that the deactivation of Pd/AC catalysts is due to high-temperature agglomeration of Pd.Comparative analysis of fresh and deactivated Pd-Cu/AC catalysts using Brunauer-Emmett-Teller,transmission electron microscopy,and thermogravimetric analysis techniques revealed decreased dispersion of active sites,reduced surface area,catalyst aggregation deactivation,and a significant decrease in Cu content.Furthermore,the results of NH3-TPD revealed that the acid sites of the catalyst increased significantly.X-ray diffraction spectra indicated the formation of new species,basic copper chloride(Cu_(2)(OH)_(3)Cl),during the reaction.As the reaction progressed,these new species agglomerated,leading to a gradual loss of catalyst activity.Moreover,the deactivated catalyst was successfully reactivated using a simple alkaline washing method.
基金financially supported by the National Natural Science Foundation of China (22078090 and 92034301)the Shanghai Rising-Star Program (21QA1402000)+1 种基金the Natural Science Foundation of Shanghai (21ZR1418100)the Open Project of State Key Laboratory of Chemical Engineering (SKL-ChE-21C02)。
文摘Dry reforming of methane(DRM) is an attractive technology for utilizing the greenhouse gases(CO_(2) and CH_(4)) to produce syngas. However, the catalyst pellets for DRM are heavily plagued by deactivation by coking, which prevents this technology from commercialization. In this work, a pore network model is developed to probe the catalyst deactivation by coking in a Ni/Al_(2)O_(3) catalyst pellet for DRM. The reaction conditions can significantly change the coking rate and then affect the catalyst deactivation. The catalyst lifetime is higher under lower temperature, pressure, and CH_(4)/CO_(2) molar ratio, but the maximum coke content in a catalyst pellet is independent of these reaction conditions. The catalyst pellet with larger pore diameter, narrower pore size distribution and higher pore connectivity is more robust against catalyst deactivation by coking, as the pores in this pellet are more difficult to be plugged or inaccessible.The maximum coke content is also higher for narrower pore size distribution and higher pore connectivity, as the number of inaccessible pores is lower. Besides, the catalyst pellet radius only slightly affects the coke content, although the diffusion limitation increases with the pellet radius. These results should serve to guide the rational design of robust DRM catalyst pellets against deactivation by coking.
基金financially supported by the National Natural Science Foundation of China(22078292,22008212,U20A20119,21776258)。
文摘The overall performance of metal catalysts can be efficiently adjusted by modifying carbon carriers with different valence sulfur precursors.The wet impregnation technique successfully prepared carbon material carriers doped with varying sources of sulfur(Na_(2)SO_(4),NaHSO_(3),Na_(2)S·9H_(2)O).Palladium carbon catalysts doped with different sulfur precursors had been prepared with the aid of the liquid-phase reduction method of the selective hydrogenation of o-chloronitrobenzene(o-CNB)to o-chloroaniline(o-CAN).The catalyst prepared for Na_(2)S·9H_(2)O as a precursor has excellent performance,and the selectivity for o-CAN is more than 99.9%at 100%conversion.In addition,the characterization results show that with the decrease of S valence,the electronic effect between S and Pd increases,and the outer electron shift of Pd increases,which reduces the adsorption and dissociation ability of Pd to hydrogen,resulting in excellent selectivity.The effects provided a good idea for the hydrogenation of o-CNB and a different point of view on sulfur doping in a variety of hydrogenation reactions.
基金funded by the National Natural Science Foundation of China(U20A20119,22078292 and 22008212)。
文摘In order to improve the catalytic performance of the nitrobenzene hydrogenation rearrangement to prepare p-aminophenol,a bimetallic Pt-Ni/C(PNC)catalyst was synthesized.Taking advantage of the synergistic effect of Ni and Pt to enhance product selectivity and catalytic performance stability,the electrons in Ni are moved to Pt by the electron effect,which affects the catalyst’s ability to activate H_(2)as well as the amount of hydrogen activated.Furthermore,due to the strong Pt(5d)-Ni(3d)coupling effect,Ni can effectively maintain Pt stability in the acidic system and reduce Pt dissolution.The stability of the PNC can be found to be greatly enhanced compared to the Pt/C(PC)catalyst,and p-aminophenol selectivity is greatly enhanced,showing excellent catalytic performance.
基金Supported by the National Natural Science Foundation of China(21476207,21506189)Zhejiang Postdoctoral Research Funded Projects(BSH1502147)
文摘The acidity and acid distribution of hierarchical porous ZSM-5 were tailored via phosphate modification. The catalytic results showed that both benzene conversion and selectivity of toluene and xylene increased with the presence of appropriate amount of phosphorus. Meanwhile, side reactions such as methanol to olefins related with the formation of by-product ethylbenzene formation and isomerization of xylene to meta-xylene were suppressed efficiently. The acid strength and sites amount of Br?nsted acid of the catalyst were crucial for improving benzene conversion and yield of xylene, whereas passivation of external surface acid sites played an important role in breaking thermodynamic equilibrium distribution of xylene isomers.
基金Supported by the National Natural Science Foundation of China(NSFC-21476207 and NSFC-21506189)the National Basic Research Program of China(973 Program)(2011CB710800)
文摘The porous material HZSM-5 zeolite with micro-mesopore hierarchical porosity was prepared by post-treatment (combined alkali treatment and acid leaching) of parent zeolite and its catalytic performance for benzene alkylation with methanol was investigated. The effect of post-treatment on the textural properties was characterized by various techniques (including ICP-AES, XRD, nitrogen sorption isotherms, SEM, NH3-TPD, Py-IR and TG). The results indicated that the post-treatment could modify the structural and acidic properties of HZSM-5 zeolite. In this procedure, not only additional mesopores were created by selective extraction of silicon but also the acidity was tuned. Consequently, the modified HZSM-5 zeolite showed larger external surface area with less acid sites as compared to the parent zeolite. It was found out that the modified zeolite exhibited a higher benzene conversion and xylene selectivity for alkylation of benzene with methanol as well as excellent life span of the catalyst than conventional ones. This can be explained by the facts that the presence of additional mesopores improved the diffusion property in the reactions. Furthermore, the modified zeolite showed an appropriate Bronsted acidity for effective suppression of the side reaction of methanol to olefins, thus reduced the accumulation of coke on the HZSM-5 zeolite, which was favorable for the catalyst stability. In comparison with the parent HZSM-5 zeolite, the modified zeolite by alkali treatment and acid leaching showed better performance for the benzene alkylation with methanol.
基金Supported by the National Natural Science Foundation of China(Nos.21473159 and91334013)
文摘The selective hydrogenation of halogenated nitrobenzene over noble metal catalysts(Pd, Pt, and Ir) has attracted much attention owing to its high efficiency and environmental friendliness. However, the effect of size on the catalytic performance varies among different metal catalysts. In this study, sub-nano(<3 nm) Ir and Pd particles were prepared, and their catalytic properties for hydrogenation of halogenated nitrobenzene were evaluated.Results show that high selectivity(N 99%) was achieved over small Ir nanoparticles, in which the selectivity over the Pd with same size was much lower than that on Ir nanoparticles. Meanwhile, Ir and Pd have different hydrogen consumption rates and reaction rates. Density functional theory calculations showed that p-chloronitrobenzene(CNB) has different adsorption properties on Ir and Pd. The distance between oxygen(cholorine) and Ir is much shorter(longer) than that between oxygen and Pd. The reaction barriers of dechlorination of p-CNB and p-chloroaniline over different Ir models are much larger than those on Pd. Especially,lower coordination of Ir leads to larger barriers of dechlorination reaction. These theoretical results explain the difference between Ir and Pd on hydrogenation of halogenated nitrobenzene.
基金financed by the National Natural Science Foundation of China(NSFC-21476207,91534114,21776256)。
文摘Developing of non-metallic catalyst to replace metal catalyst is a meaningful and challenging direction.In this work,the non-metallic catalyst was synthetized successfully by loading ionic liquid onto the silica surface,which was applied for the gas-phase dehydrochlorination of 1,1,2,2-tetrachloroethane.The 12%TPPC/SiO2(wt%)showed the best results with the conversion of 1,1,2,2-tetrachloroethane reaching 100%.The selectivity of 1,1,2-trichloroethylene was 100%,and no deactivation was found during the evaluation period.The catalytic mechanism was investigated and possible reaction route was given,which was a reference for fabricating and design of solid base catalyst.
基金Supported by the National Natural Science Foundation of China(21776258,21476207,91534113,21406199,21566013,21875220)Education Science Planning Project of Jiangxi Province(No.18YB243)the Program from Science and Technology Department of Zhejiang Province(2015C31042).
文摘A novel template-free oxalate route was applied to synthesize different mesoporous manganese oxides(amorphous manganese oxide(AMO),Mn5 O8,Mn3 O4,Mn O2)in the narrow temperature range from 350°C to 400°C by controlling the calcination conditions,which were employed as the efficient catalysts for the oxidative coupling of alcohols with amines to imines.The chemical and structural properties of the manganese oxides were characterized by the methods of thermogravimetry analysis and heat flow(TG-DSC),X-ray diffraction(XRD),nitrogen sorption,scanning electron microscope(SEM),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),H2 temperature-programmed reduction(H2-TPR),and inductively coupled plasma optical emission spectrometry(ICP-OES)techniques.The structures of different manganese oxides were confirmed by characterization.The M-350(AMO)presented the maximum surface area,amorphous nature,the lowest reduction temperature,the higher(Mn3++Mn4+)/Mn2+ratio,and the higher adsorbed oxygen species compared to other samples.Among the catalysts,M-350 showed the best catalytic performance using air as an oxidant,and the conversion of benzyl alcohol(BA)and the selectivity of N-benzylideneaniline(NBA)reached as high as 100%and 97.1%respectively at the lower reaction temperature(80°C)for 1 h.M-350 had also the highest TOF value(0.0100 mmol·mg-1·h-1)compared to the other manganese oxide catalysts.The catalyst was reusable and gave 95.8%conversion after 5 reuse tests,the XRD pattern of the reactivated M-350 did not show any obvious change.Lattice oxygen mobility and(Mn3++Mn4+)/Mn2+ratio were found to play the important roles in the catalytic activity of aerobic reactions.
基金financially supported by the National Natural Science Foundation of China (22078090 and 92034301)the Shanghai Rising-Star Program (21QA1402000)+1 种基金the Natural Science Foundation of Shanghai (21ZR1418100)the Open Project of State Key Laboratory of Chemical Engineering (SKL-ChE-21C02)
文摘A redox process combining propane dehydrogenation(PDH)with selective hydrogen combustion(SHC)is proposed,modeled,simulated,and optimized.In this process,PDH and SHC catalysts are physically mixed in a fixed-bed reactor,so that the two reactions proceed simultaneously.The redox process can be up to 177.0%higher in propylene yield than the conventional process where only PDH catalysts are packed in the reactor.The reason is twofold:firstly,SHC reaction consumes hydrogen and then shifts PDH reaction equilibrium towards propylene;secondly,SHC reaction provides much heat to drive the highly endothermic PDH reaction.Considering propylene yield,operating time,and other factors,the preferable operating conditions for the redox process are a feed temperature of 973 K,a feed pressure of 0.1 MPa,and a mole ratio of H_(2) to C_(3)H_(8) of 0.15,and the optimal mass fraction of PDH catalyst is 0.5.This work should provide some useful guidance for the development of redox processes for propane dehydrogenation.
基金supported by the National Key Research and Development Program of China(2021YFD1601105)the Chinese Academy of Agricultural Sciences through Agricultural Sciences Innovation Project(CAAS-ASTIP-2017-TRICAAS)China Agriculture Research System of MOF and MARA(CARS-19).
文摘Phosphorus(P)is the second most limiting nutrient for plant growth.Previous studies suggested that P substantially affects the yield and quality of tea by affecting root growth,the decomposition and metabolism of minerals and metabolites in plants.Thus,the environmental pollution and degradation of crop quality caused by irrational fertilization is of increasing interest for researchers worldwide.To understand the effects of P fertilization on tea quality and metabolism of key quality components,three P fertilization levels(excessive,appropriate,and deficient application)were applied to tea plants using pot experiments.Content of P,potassium,polyphenols,amino acids and anthocyanins in the leaves or soil were quantified.The sensory quality of tea infusion was reduced under irrational(excessive or deficient)P fertilization.Under P deficiency,the total content of polyphenols and anthocyanins in the leaves were strongly increased compared with those of the control.A high soil P content(excessive)inhibited polyphenol accumulation,but induced the accumulation of certain anthocyanins,such as peonidin-3-Osambubioside-5-O-glucoside and peonidin-3-O-5-O-(6-O-p-coumaryl)-diglucoside.These results suggest that the reduction of tea quality caused by irrational P application is associated with anthocyanin metabolism,which provides a scientific basis for improving P fertilization strategies in tea plantations.
基金financial support from the National Natural Science Foundation of China(Nos. NSFC-21476207 and NSFC21506189)National Basic Research Program of China (973 Program, No. 2011CB710800)
文摘In our present work, the high-silica hierarchical porous ZSM-5 with appropriate Br(o|¨)nsted acidity and hierarchical porous structure was synthesized by sol-gel method for continuously catalytic conversion of benzene alkylation with methanol to xylene. The effects of temperature, pressure, benzene/methanol molar ratio and weight hour space velocity(WHSV) on the catalytic performance of the catalyst were investigated as well. As a result, the high-silica hierarchical porous ZSM-5 showed great performance as the yield of xylene was up to 41.1% under the optimum reaction conditions(500 ℃,0.1 MPa,M_(benzene)/M_(methanol)= 1:1.5 and WHSV=4 h 1), while the selectivity to by-product, ethylbenzene, was well suppressed(below 0.1%). In addition, the catalyst structure and properties were characterized by the means of XRD, IR, TPD,SEM, TEM and N_2 physical adsorption technologies.
基金Financial support from the National Natural Science Foundation of China (NSFC,Nos.21776258,21476207,91534113,21406199, 21566013,21875220)Program from Science and Technology Department of Zhejiang Province (Nos.2015C31042, LY17B060006)+1 种基金Education Science Planning Project of Jiangxi Province (No.18YB243)Natural Science Foundation of Jiangxi Province (No.20181BAB216032)
文摘Enhancing the selectivity of imines for the oxidative self-coupling of primary amines was found to be challenging in the heterogeneous catalysis.Three different manganese oxides(M-3,M-4,M-5) were synthesized by controlling the calcination temperature using a simple template-free oxalate route.The prepared manganese oxides were systematically characterized using XRD,N2 sorption,SEM,TEM,XPS,H2-TPR techniques.M-4 gave 96.2% selectivity of imine at 100% conversion of benzylamine,which was far more superior than other existing protocols.Mn^3+/Mn^4+ ratio was found to affect the selectivity of the imines.The probable reaction pathway for amines oxidation catalyzed by manganese oxides was proposed for the first time.
基金This work was supported by the National Natural Science Foundation of China(Grant No.11772314)the Basic Research Program(Grant No.JCKY2018204b054).
文摘We utilize the nonlinear acoustic solver(NLAS)and Ffowcs-Williams/Hawkings(FW-H)equation to investigate the noise generation and radiation due to shock(wave)and boundary layer interaction(SBLI)in the inlet duct.A classical benchmark for SBLI is chosen to validate the flow features and numerical results show good agreement with experimental results.In the simulation of the noise generated by SBLI,the inlet buzz phenomenon is successfully observed.The oscillation of the normal shock is a kind of little buzz and the oscillation of inner shocks is a kind of big buzz with a frequency around 100 Hz.In the far-field,frequency spectrums show a dominant frequency close to the frequency of inner shocks oscillation.This indicates that the oscillation of inner shocks determines the magnitude of the overall sound pressure level(OASPL)of the far-field noise.