Corrodible metals are the newest kind of biodegradable materials and raise a new problem of the corrosion products.However,the removal of the precipitated products has been unclear and even largely ignored in publicat...Corrodible metals are the newest kind of biodegradable materials and raise a new problem of the corrosion products.However,the removal of the precipitated products has been unclear and even largely ignored in publications.Herein,we find that albumin,an abundant macromolecule in serum,enhances the solubility of corrosion products of iron in blood mimetic Hank’s solution significantly.This is universal for other main biodegradable metals such as magnesium,zinc and polyester-coated iron.Albumin also influences corrosion rates in diverse trends in Hank’s solution and normal saline.Based on quantitative study theoretically and experimentally,both the effects on corrosion rates and soluble fractions are interpreted by a unified mechanism,and the key factor leading to different corrosion behaviors in corrosion media is the interference of albumin to the Ca/P passivation layer on the metal surface.This work has illustrated that the interactions between metals and media macromolecules should be taken into consideration in the design of the next-generation metal-based biodegradable medical devices in the formulism of precision medicine.The improved Hank’s solution in the presence of albumin and with a higher content of initial calcium salt is suggested to access biodegradable metals potentially for cardiovascular medical devices,where the content of calcium salt is calculated after consideration of chelating of calcium ions by albumin,resulting in the physiological concentration of free calcium ions.展开更多
The malalignment of teeth is treated classically by metal braces with alloy wires,which has an unfavorable influence on the patients appearance during the treatment.With the development of digitization,computer simula...The malalignment of teeth is treated classically by metal braces with alloy wires,which has an unfavorable influence on the patients appearance during the treatment.With the development of digitization,computer simulation and three-dimensional(3D)printing technology,herein,a modern treatment was tried using clear polymeric aligners,which were fabricated by molding polyurethane films via thermoforming on the 3D-printed personalized dental models.The key parameters of photocurable 3D printing of dental models and the mechanical properties of the clear aligner film material were examined.The precision of a 3D-printed dental model mainly relied on characteristics of photocurable resin,the resolution of light source and the exposure condition,which determined the eventual shape of the molded clear aligner and thus the orthodontic treatment efficacy.The biocompatibility of the polyurethane filmmaterial was confirmed through cytotoxicity and hemolysis tests in vitro.Following a series of 3D-printed personalized dental models and finite element analysis to predict and plan the fabrication and orthodontic processes,corresponding clear aligners were fabricated and applied in animal experiments,which proved the efficacy and biocompatibility in vivo.Clinical treatments of 120 orthodontic cases were finally carried out with success,which highlights the advantage of the clear aligners as an esthetic,compatible and efficient appliance.展开更多
The aortic dissection(AD)is a life-threatening disease.The transcatheter endovascular aortic repair(EVAR)affords a minimally invasive technique to save the lives of these critical patients,and an appropriate stent-gra...The aortic dissection(AD)is a life-threatening disease.The transcatheter endovascular aortic repair(EVAR)affords a minimally invasive technique to save the lives of these critical patients,and an appropriate stent-graft gets to be the key medical device during an EVAR procedure.Herein,we report a trilayer stent-graft and corresponding delivery system used for the treatment of the AD disease.The stent-graft is made of nitinol stents with an asymmetric Z-wave design and two expanded polytetrafluoroethylene(ePTFE)membranes.Each of the inner and outer surfaces of the stent-graft was covered by an ePTFE membrane,and the two membranes were then sintered together.The biological studies of the sintered ePTFE membranes indicated that the stent-graft had excellent cytocompatibility and hemocompatibility in vitro.Both the stent-graft and the delivery system exhibited satisfactory mechanical properties and operability.The safety and efficacy of this stent-graft and the corresponding delivery system were demonstrated in vivo.In nine canine experiments,the blood vessels of the animals implanted with the stent-grafts were of good patency,and there were no thrombus and obvious stenosis by angiography after implantation for 6months.Furthermore,all of the nine clinical cases experienced successful implantation using the stent-graft and its postrelease delivery system,and the 1-year follow-ups indicated the preliminary safety and efficacy of the trilayer stent-graft with an asymmetric Z-wave design for interventional treatment.展开更多
Expanded polytetrafluoroethylene(ePTFE)is promising in biomedical fields such as covered stents and plastic surgery owing to its excellent biocompatibility and mechanical properties.However,ePTFE material prepared by ...Expanded polytetrafluoroethylene(ePTFE)is promising in biomedical fields such as covered stents and plastic surgery owing to its excellent biocompatibility and mechanical properties.However,ePTFE material prepared by the traditional biaxial stretching process is with thicker middle and thinner sides due to the bowing effect,which poses a major problem in industrial-scale fabrication.To solve this problem,we design an olive-shaped winding roller to provide the middle part of the ePTFE tape with a greater longitudinal stretching amplitude than the two sides,so as to make up for the excessive longitudinal retraction tendency of the middle part when it is transversely stretched.The as-fabricated ePTFE membrane has,as designed,uniform thickness and node-fibril microstructure.In addition,we examine the effects of mass ratio of lubricant to PTFE powder,biaxial stretching ratio and sintering temperature on the performance of the resultant ePTFE membranes.Particularly,the relation between the internal microstructure of the ePTFE membrane and its mechanical properties is revealed.Besides stable mechanical properties,the sintered ePTFE membrane exhibits satisfactory biological properties.We make a series of biological assessments including in vitro hemolysis,coagulation,bacterial reverse mutation and in vivo thrombosis,intracutaneous reactivity test,pyrogen test and subchronic systemic toxicity test;all of the results meet the relevant international standards.The muscle implantation of the sintered ePTFE membrane into rabbits indicates acceptable inflammatory reactions of our sintered ePTFE membrane fabricated on industrial scale.Such a medical-grade raw material with the unique physical form and condensed-state microstructure is expected to afford an inert biomaterial potentially for stent-graft membrane.展开更多
基金supported by National Key R&D Program of China(grant No.2023YFC2410300)National Natural Science Foundation of China(grant No.52130302).
文摘Corrodible metals are the newest kind of biodegradable materials and raise a new problem of the corrosion products.However,the removal of the precipitated products has been unclear and even largely ignored in publications.Herein,we find that albumin,an abundant macromolecule in serum,enhances the solubility of corrosion products of iron in blood mimetic Hank’s solution significantly.This is universal for other main biodegradable metals such as magnesium,zinc and polyester-coated iron.Albumin also influences corrosion rates in diverse trends in Hank’s solution and normal saline.Based on quantitative study theoretically and experimentally,both the effects on corrosion rates and soluble fractions are interpreted by a unified mechanism,and the key factor leading to different corrosion behaviors in corrosion media is the interference of albumin to the Ca/P passivation layer on the metal surface.This work has illustrated that the interactions between metals and media macromolecules should be taken into consideration in the design of the next-generation metal-based biodegradable medical devices in the formulism of precision medicine.The improved Hank’s solution in the presence of albumin and with a higher content of initial calcium salt is suggested to access biodegradable metals potentially for cardiovascular medical devices,where the content of calcium salt is calculated after consideration of chelating of calcium ions by albumin,resulting in the physiological concentration of free calcium ions.
基金supports from NSF of China(grants No.52130302,21961160721)National Key R&D Program of China(grant No.2016YFC1100300)。
文摘The malalignment of teeth is treated classically by metal braces with alloy wires,which has an unfavorable influence on the patients appearance during the treatment.With the development of digitization,computer simulation and three-dimensional(3D)printing technology,herein,a modern treatment was tried using clear polymeric aligners,which were fabricated by molding polyurethane films via thermoforming on the 3D-printed personalized dental models.The key parameters of photocurable 3D printing of dental models and the mechanical properties of the clear aligner film material were examined.The precision of a 3D-printed dental model mainly relied on characteristics of photocurable resin,the resolution of light source and the exposure condition,which determined the eventual shape of the molded clear aligner and thus the orthodontic treatment efficacy.The biocompatibility of the polyurethane filmmaterial was confirmed through cytotoxicity and hemolysis tests in vitro.Following a series of 3D-printed personalized dental models and finite element analysis to predict and plan the fabrication and orthodontic processes,corresponding clear aligners were fabricated and applied in animal experiments,which proved the efficacy and biocompatibility in vivo.Clinical treatments of 120 orthodontic cases were finally carried out with success,which highlights the advantage of the clear aligners as an esthetic,compatible and efficient appliance.
基金financially supported by the National Science Foundation of China(Grant Nos.52130302,21961160721)the National Key R&D Program of China(Grant No.2016YFC1100300).
文摘The aortic dissection(AD)is a life-threatening disease.The transcatheter endovascular aortic repair(EVAR)affords a minimally invasive technique to save the lives of these critical patients,and an appropriate stent-graft gets to be the key medical device during an EVAR procedure.Herein,we report a trilayer stent-graft and corresponding delivery system used for the treatment of the AD disease.The stent-graft is made of nitinol stents with an asymmetric Z-wave design and two expanded polytetrafluoroethylene(ePTFE)membranes.Each of the inner and outer surfaces of the stent-graft was covered by an ePTFE membrane,and the two membranes were then sintered together.The biological studies of the sintered ePTFE membranes indicated that the stent-graft had excellent cytocompatibility and hemocompatibility in vitro.Both the stent-graft and the delivery system exhibited satisfactory mechanical properties and operability.The safety and efficacy of this stent-graft and the corresponding delivery system were demonstrated in vivo.In nine canine experiments,the blood vessels of the animals implanted with the stent-grafts were of good patency,and there were no thrombus and obvious stenosis by angiography after implantation for 6months.Furthermore,all of the nine clinical cases experienced successful implantation using the stent-graft and its postrelease delivery system,and the 1-year follow-ups indicated the preliminary safety and efficacy of the trilayer stent-graft with an asymmetric Z-wave design for interventional treatment.
基金supports from National Natural Science Foundation of China(grant no.52130302)National Key R&D Program of China(grant no.2016YFC1100300)。
文摘Expanded polytetrafluoroethylene(ePTFE)is promising in biomedical fields such as covered stents and plastic surgery owing to its excellent biocompatibility and mechanical properties.However,ePTFE material prepared by the traditional biaxial stretching process is with thicker middle and thinner sides due to the bowing effect,which poses a major problem in industrial-scale fabrication.To solve this problem,we design an olive-shaped winding roller to provide the middle part of the ePTFE tape with a greater longitudinal stretching amplitude than the two sides,so as to make up for the excessive longitudinal retraction tendency of the middle part when it is transversely stretched.The as-fabricated ePTFE membrane has,as designed,uniform thickness and node-fibril microstructure.In addition,we examine the effects of mass ratio of lubricant to PTFE powder,biaxial stretching ratio and sintering temperature on the performance of the resultant ePTFE membranes.Particularly,the relation between the internal microstructure of the ePTFE membrane and its mechanical properties is revealed.Besides stable mechanical properties,the sintered ePTFE membrane exhibits satisfactory biological properties.We make a series of biological assessments including in vitro hemolysis,coagulation,bacterial reverse mutation and in vivo thrombosis,intracutaneous reactivity test,pyrogen test and subchronic systemic toxicity test;all of the results meet the relevant international standards.The muscle implantation of the sintered ePTFE membrane into rabbits indicates acceptable inflammatory reactions of our sintered ePTFE membrane fabricated on industrial scale.Such a medical-grade raw material with the unique physical form and condensed-state microstructure is expected to afford an inert biomaterial potentially for stent-graft membrane.