We note that the Single Stage Single Period Multi Commodity Warehouse Location Problem (SSSPMCWLP) has been first attempted by Geoffrion and Graves [1], and that they use the weak formulation (in context of contributi...We note that the Single Stage Single Period Multi Commodity Warehouse Location Problem (SSSPMCWLP) has been first attempted by Geoffrion and Graves [1], and that they use the weak formulation (in context of contribution of this paper). We give for the first time “strong” formulation of SSSPMCWLP. We notice advantages of strong formulation over weak formulation in terms of better bounds for yielding efficient Branch and Bound solutions. However, the computation time of “strong” formulation was discovered to be higher than that of the “weak” formulation, which was a major drawback in solving large size problems. To overcome this, we develop the hybrid strong formulation by adding only a few most promising demand and supply side strong constraints to the weak formulation of SSSPMCWLP. So, the formulations developed were put to test on various large size problems. Hybrid formulation is able to give better bound than the weak and takes much less CPU time than the strong formulation. So, a kind of trade off is achieved allowing efficiently solving large sized SSSPMCWLP in real times using hybrid formulation.展开更多
Single Stage Capacitated Warehouse Location Problem (SSCWLP) has been attempted by few researchers in the past. These are Geoffrion and Graves [1], Sharma [2], Sharma [3] and Sharma and Berry [4]. In this paper we giv...Single Stage Capacitated Warehouse Location Problem (SSCWLP) has been attempted by few researchers in the past. These are Geoffrion and Graves [1], Sharma [2], Sharma [3] and Sharma and Berry [4]. In this paper we give a “vertical decomposition” approach to solve SSCWLP that uses Lagrangian relaxation. This way SSCWLP is broken into two versions of capacitated plant location problem (the CPLP_L and CPLP_R) by relaxing the flow balance constraints. For CPLP_R, we use well known Lagrangian relaxations given in literature (Christofides and Beasley [5] and Nauss [6]);and adopt them suitably for solving CPLP_L. We show theoretically in this paper that SSCWLP can be more efficiently solved by techniques of vertical decomposition developed in this paper than the method available in literature (Sharma and Berry [4]). Encouraging computational study is reported in this paper.展开更多
For the transportation problem, Sharma and Sharma [1] have given a very computationally efficient heuristic (runs in O(c*n2) time) to give very good dual solution to transportation problem. Sharma and Prasad [2] have ...For the transportation problem, Sharma and Sharma [1] have given a very computationally efficient heuristic (runs in O(c*n2) time) to give very good dual solution to transportation problem. Sharma and Prasad [2] have given an efficient heuristic (complexity O(n3) procedure to give a very good primal solution (that is generally non-basic feasible solution) to transportation problem by using the very good dual solution given by Sharma and Sharma [2]. In this paper we use the solution given by Sharma and Prasad [2] to get a very good Basic Feasible Solution to transportation problem, so that network simplex (worst case complexity (O(n3*(log(n))) can be used to reach the optimal solution to transportation problem. In the second part of this paper, we give a simple heuristic procedure to get a very good BFS to linear programming problem from the solution given by Karmarkar [3] (that generally produces a very good non-basic feasible solution in polynomial time (O(n5.5)). We give a procedure to obtain a good BFS for LP by starting from the solution given by Karmarkar [3]. We note that this procedure (given here) is significantly different from the procedure given in [4].展开更多
We reduce lot sizing problem with (a) Set Up, Production, Shortage and Inventory Costs to lot sizing problem with (b) Set Up, Production, and Inventory Costs. For lot sizing problem (as in (b)), Pochet and Wolsey [1] ...We reduce lot sizing problem with (a) Set Up, Production, Shortage and Inventory Costs to lot sizing problem with (b) Set Up, Production, and Inventory Costs. For lot sizing problem (as in (b)), Pochet and Wolsey [1] have given already integral polyhedral with polynomial separation where a linear program yield “integer” solutions. Thus problem (b) which we have created can be more easily solved by methods available in literature. Also with the removal of shortage variables is an additional computational advantage.展开更多
Formulation of SLCLSP given by Pochet and Wolsey [1] had set up, variables, inventory and shortage cost. We give a new reformulation where SLCLSP is reduced to set up and inventory variables. We find that this reformu...Formulation of SLCLSP given by Pochet and Wolsey [1] had set up, variables, inventory and shortage cost. We give a new reformulation where SLCLSP is reduced to set up and inventory variables. We find that this reformulation has less number of real variables than the reformulation of Pochet and Wolsey [1]. It is argued that this leads to computations advantages, and this is supported by the empirical investigation that we carried out.展开更多
文摘We note that the Single Stage Single Period Multi Commodity Warehouse Location Problem (SSSPMCWLP) has been first attempted by Geoffrion and Graves [1], and that they use the weak formulation (in context of contribution of this paper). We give for the first time “strong” formulation of SSSPMCWLP. We notice advantages of strong formulation over weak formulation in terms of better bounds for yielding efficient Branch and Bound solutions. However, the computation time of “strong” formulation was discovered to be higher than that of the “weak” formulation, which was a major drawback in solving large size problems. To overcome this, we develop the hybrid strong formulation by adding only a few most promising demand and supply side strong constraints to the weak formulation of SSSPMCWLP. So, the formulations developed were put to test on various large size problems. Hybrid formulation is able to give better bound than the weak and takes much less CPU time than the strong formulation. So, a kind of trade off is achieved allowing efficiently solving large sized SSSPMCWLP in real times using hybrid formulation.
文摘Single Stage Capacitated Warehouse Location Problem (SSCWLP) has been attempted by few researchers in the past. These are Geoffrion and Graves [1], Sharma [2], Sharma [3] and Sharma and Berry [4]. In this paper we give a “vertical decomposition” approach to solve SSCWLP that uses Lagrangian relaxation. This way SSCWLP is broken into two versions of capacitated plant location problem (the CPLP_L and CPLP_R) by relaxing the flow balance constraints. For CPLP_R, we use well known Lagrangian relaxations given in literature (Christofides and Beasley [5] and Nauss [6]);and adopt them suitably for solving CPLP_L. We show theoretically in this paper that SSCWLP can be more efficiently solved by techniques of vertical decomposition developed in this paper than the method available in literature (Sharma and Berry [4]). Encouraging computational study is reported in this paper.
文摘For the transportation problem, Sharma and Sharma [1] have given a very computationally efficient heuristic (runs in O(c*n2) time) to give very good dual solution to transportation problem. Sharma and Prasad [2] have given an efficient heuristic (complexity O(n3) procedure to give a very good primal solution (that is generally non-basic feasible solution) to transportation problem by using the very good dual solution given by Sharma and Sharma [2]. In this paper we use the solution given by Sharma and Prasad [2] to get a very good Basic Feasible Solution to transportation problem, so that network simplex (worst case complexity (O(n3*(log(n))) can be used to reach the optimal solution to transportation problem. In the second part of this paper, we give a simple heuristic procedure to get a very good BFS to linear programming problem from the solution given by Karmarkar [3] (that generally produces a very good non-basic feasible solution in polynomial time (O(n5.5)). We give a procedure to obtain a good BFS for LP by starting from the solution given by Karmarkar [3]. We note that this procedure (given here) is significantly different from the procedure given in [4].
文摘We reduce lot sizing problem with (a) Set Up, Production, Shortage and Inventory Costs to lot sizing problem with (b) Set Up, Production, and Inventory Costs. For lot sizing problem (as in (b)), Pochet and Wolsey [1] have given already integral polyhedral with polynomial separation where a linear program yield “integer” solutions. Thus problem (b) which we have created can be more easily solved by methods available in literature. Also with the removal of shortage variables is an additional computational advantage.
文摘Formulation of SLCLSP given by Pochet and Wolsey [1] had set up, variables, inventory and shortage cost. We give a new reformulation where SLCLSP is reduced to set up and inventory variables. We find that this reformulation has less number of real variables than the reformulation of Pochet and Wolsey [1]. It is argued that this leads to computations advantages, and this is supported by the empirical investigation that we carried out.